CLASSE DE PROBLÈMES SLCI-2

MODÉLISER LES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

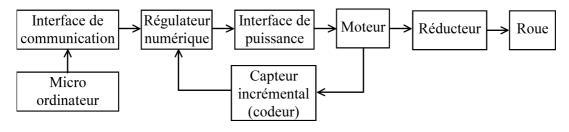
ÉTABLIR DES MODÈLES DE CONNAISSANCE ET DE COMPORTEMENT

IDENTIFIER ET CARACTÉRISER LE SYSTÈME

SIMULER LA MODÉLISATION ET COMPARER DONNÉES SIMULÉES ET DONNÉES EXPÉRIMENTALES

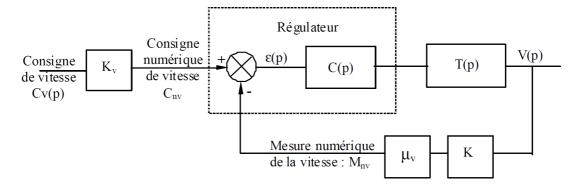
Mise en situation

Les chariots filoguidés sont utilisés dans les ateliers de production pour convoyer des produits d'un poste de travail à un autre.


La maquette du laboratoire est équipée :

- d'un système de propulsion (roue motrice entraînée par un moteur électrique associé à un réducteur de vitesse),
- d'un système de guidage ("calage" sur le champ magnétique émis par un fil parcouru par un courant électrique et qui, dans la réalité, est noyé dans le sol).
- d'un système de reconnaissance du lieu (lecture de code-barres).

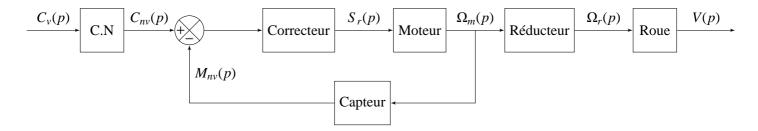
2 Asservissement en vitesse et en position du chariot


Pour assurer un positionnement correct du chariot lorsqu'il s'arrête à un poste de travail, le moteur de propulsion est asservi en vitesse et en position.

Îlot: Chariot

La figure ci-dessus permet d'appréhender la structure de l'asservissement du chariot. C'est cette structure que nous allons étudier.

3 Schéma-blocs de l'asservissement de vitesse


C(p): fonction de transfert du correcteur intégré au régulateur.

T(p): fonction de transfert associée à l'ensemble interface de puissance, moteur, réducteur et roue.

mu_v: coefficient de transfert du codeur.

 K_{ν} : coefficient de conversion analogique numérique.

K: coefficient d'adaptation.

4 Objectif du Tp

Étudier la partie commande du système de propulsion. Pour cela on demandera de :

- déterminer la fonction de transfert du processus par identification,
- caractériser le capteur,
- montrer l'influence d'une augmentation du gain de la chaîne directe.