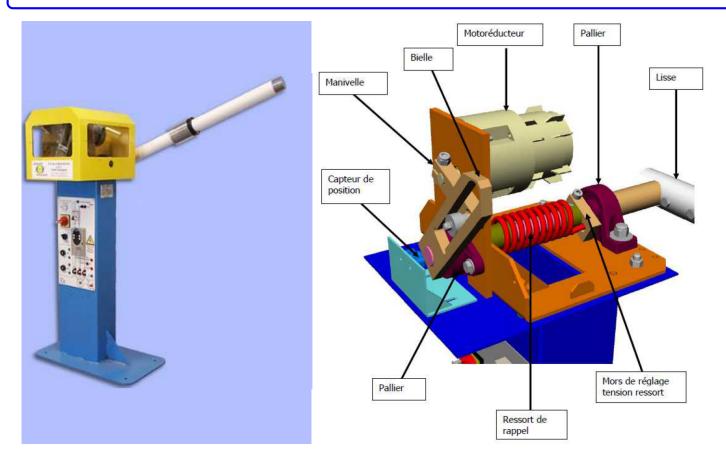
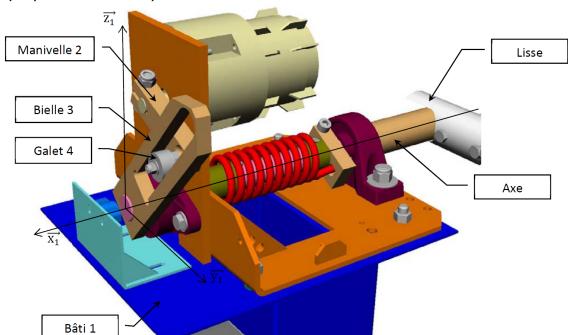
CLASSE DE PROBLÈMES CIN


Prévoir et vérifier les performances cinématiques des systèmes

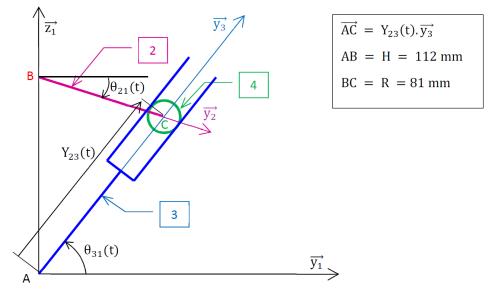
MODÉLISER LES LIAISONS ENTRE SOLIDES

REPRÉSENTER SCHÉMATIQUEMENT UN MÉCANISME

ETABLIR LA RELATION ENTRÉE/SORTIE D'UN POINT DE VUE ANALYTIQUE


1 Modèle cinématique

2 Etude cinématique


2.1 Paramétrage

Îlot: Barrière

La perspective ci-dessous représente le mécanisme de transformation de mouvement de la barrière.

Paramétrage du mécanisme :

La vitesse du moteur $\omega = \dot{\theta}_{21}$

2.2 Recherche de la loi entrée sortie du mécanisme

- **Q 1** : Écrire la relation de fermeture géométrique du mécanisme.
- **Q 2**: Projeter cette relation dans la base (\vec{y}_1, \vec{z}_1) .
- **Q 3** : *Déterminer l'expression de* $\theta_{31}(t)$ *en fonction de* $\theta_{21}(t)$.

- **Q 4** : Déterminer expression de $Y_{23}(t)$ en fonction de $\theta_{21}(t)$.
- **Q 5**: Déterminer θ_{21min} et θ_{21max} sachant que $45^{\circ} \leq \theta_{31} \leq 135^{\circ}$.

REMARQUE: l'utilisation d'un moyen numérique de résolution sera peut-être nécessaire.

- **Q 6** : Déterminer Y_{23min} et Y_{23max} .
- **Q 7**: Tracer à l'aide du logiciel Excel l'évolution de $\theta_{31}(t)$ en fonction de $\theta_{21}(t)$.
- **Q 8** : Dériver les relations déterminées aux questions Q2 et Q3.

2.3 Recherche de la vitesse en bout de bras

- **Q 9**: Donner l'expression du vecteur vitesse $\overrightarrow{V}_{(C,2/1)}$.
- **Q 10**: Donner l'expression du vecteur vitesse $\overrightarrow{V}_{(C,4/3)}$
- **Q 11** : Donner l'expression du vecteur vitesse $\overrightarrow{V}_{(C,3/1)}$
- **Q 12**: Justifier que $\overrightarrow{V}_{(C,4/2)} = \overrightarrow{0}$.
- **Q 13** : Écrire la relation de composition des vitesses en C.
- **Q 14**: Projeter cette relation dans la base (\vec{y}_1, \vec{z}_1) . Quelle remarque peut être faite?

D est un point situé à l'extrémité de la lisse de 2 m.

Q - 15 : Donner l'expression du vecteur vitesse $\overrightarrow{V}_{(D,3/1)}$ Déterminer la vitesse maximale en bout de bras sachant que la vitesse maximale du motoréducteur est de 70 trs/min.