RÉSOUDRE UNE ÉQUATION DU TYPE f(x) = 0TD 1 - SIM-NUM

1 Racines d'un polynôme

Le polynôme $P(x) = x^3 - 2.x - 5$ a une racine proche de 2.

Q - 1: En partant de $x_0 = 2$, calculer $(x_i)_1^3$ les 3 premières itérations issues de la méthode de Newton. Que vaut alors $P(x_3)$?

Q - 2 : Calculer P(3). Si P(2).P(3) < 0, déterminer le nombre d'itérations nécessaires pour obtenir une approximation x_{sol} à 10^{-5} près de la racine de P proche de 2. Calculer alors $P(x_{sol})$.

2 Racine énième

Soit la fonction $f(x) = x^n - a$.

 ${f Q}$ - ${f 3}$: Montrer que la méthode de Newton conduit à la relation de récurrence suivante :

$$x_{k+1} = \frac{1}{n} \cdot \left[(n-1) \cdot x_k - \frac{a}{x_k^{n-1}} \right]$$

3 Remboursement de prêt

Un prêt de $K \in$ (capital emprunté) est remboursé en n mensualités d'un même montant M. Les remboursements commencent un moins après le versement du prêt. On montre que si le taux d'intérêt annuel proportionnel est t alors :

$$K.\frac{t}{12} = M.\left(1 - \frac{1}{\left(1 + \frac{t}{12}\right)^n}\right)$$

Dans le cas d'une prêt de A = 10000 € pour l'achat d'une voiture, ce prêt est remboursé en 60 mensualités de 250 €.

Q - 4 : Utiliser une méthode de Newton pour déterminer le taux d'intérêt mensuel r avec 4 chiffres significatifs.

4 $x = 2.\sin(x)$

Intéressons nous à la résolution de l'équation x = 2. $\sin(x)$ en posant f(x) = x - 2. $\sin(x)$.

Q - 5 : Donner l'expression de f'(x) où f' est la dérivée de f.

Q - 6: Que se passe-t-il si le premier élément pour la recherche du zéro de la fonction avec la méthode de Newton est $x_0 = \frac{\pi}{3}$?

Q - 7: On choisit $x_0 = 1, 1$. Calculer les $(x_i)_1^6$ premiers termes issus des itérations avec la méthode de Newton.

Q - 8: Placer les $(x_i)_0^2$ premiers termes sur la Fig 2.

 ${f Q}$ - ${f 9}$: Expliquer pourquoi, en partant de $x_0=1,5,$ l'algorithme converge très rapidement.

Q - 10: Que se passe-t-il lorsqu'on pose $g(x) = \frac{2}{x} - \frac{1}{\sin(x)}$?

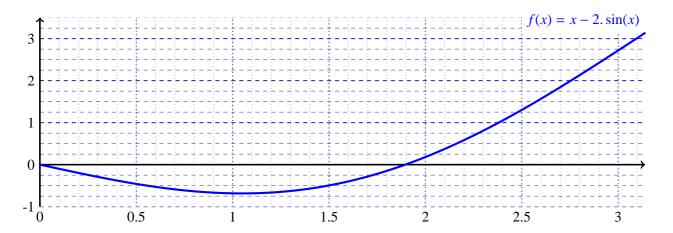


FIGURE $1 - f(x) = x - 2 \cdot \sin(x)$ pour $x \in [0, \pi]$

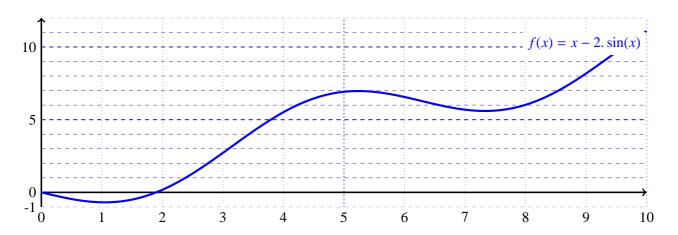


FIGURE $2 - f(x) = x - 2 \cdot \sin(x)$ pour $x \in [0, 10]$

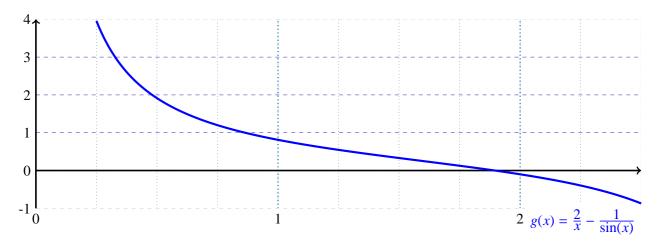


FIGURE $3 - g(x) = \frac{2}{x} - \frac{1}{\sin(x)}$ pour $x \in [0, 25; 2, 5]$