Codage de l'information

Nombres et caractères

S2-1 CODE

Germain Gondor

Lycée Carnot - Dijon, 2024 - 2025

Sommaire

- Problématique
- Système de numération
- 3 Le codage des nombres
- 4 Les caractères

A la fin de la séquence d'enseignement les élèves doivent :

A la fin de la séquence d'enseignement les élèves doivent :

 décrire le principe de la représentation des nombres entiers en mémoire.

A la fin de la séquence d'enseignement les élèves doivent :

- décrire le principe de la représentation des nombres entiers en mémoire.
- décrire le principe de la représentation des nombres réels en mémoire.

A la fin de la séquence d'enseignement les élèves doivent :

- décrire le principe de la représentation des nombres entiers en mémoire.
- décrire le principe de la représentation des nombres réels en mémoire.
- citer et prévenir les conséquences de la représentation limitée des nombres réels en machine

Sommaire

- Problématique
- Système de numération
- Le codage des nombres
- 4 Les caractères

OBJECTIF: coder les nombres et les caractères à l'aide de codes binaires.

OBJECTIF: coder les nombres et les caractères à l'aide de codes binaires.

En effet, un ordinateur traite de l'information sous forme numérique binaire.

OBJECTIF: coder les nombres et les caractères à l'aide de codes binaires.

En effet, un ordinateur traite de l'information sous forme numérique binaire.

L'information se caractérise par son contenu (ce qu'elle représente), sa forme (la manière de la formuler), son support (le moyen de la véhiculer).

Le contenu peut concerner des grandeurs numériques (code postal, entier relatif, pixels, etc.), mais aussi des grandeurs analogiques (son, vitesse de rotation, etc.).

On s'intéresse ici à la forme des informations à traiter et à la notion de codage des nombres et des caractères.

Un code constitue une correspondance entre des symboles et des objets à désigner.

Un code binaire est une correspondance arbitraire entre un ensemble de symboles (0 et 1) et un ensemble d'objets (chiffres, lettres, couleurs, etc.).

Norme CEI de 2004 (IEEE 1541)

ATTENTION!

On appelle:

- bit (b): binary digit, unité d'information pouvant prendre la valeur 0 ou la valeur 1
- octet (o): un mot binaire de 8 bits.
- byte (B): terme anglo-saxon équivalent à octet

Type : Disque local

Système de NTFS fichiers :

Espace utilisé : 306 892 697 600 octets 285 Go

Espace libre: 39 990 919 168 octets 37,2 Go

Capacité: 346 883 616 768 octets 323 Go

Préfixes binaires (préfixes CEI)

Préfixes binaires (préfixes CEI)			
Nom	Symb.	Puissance de 2	
Kibi	Ki	$2^{10} = 1024$	
Mébi	Mi	$2^{20} = 1048576$	
Gibi	Gi	$2^{30} = 1073741824$	
Tébi	Ti	$2^{40} = 1099511627776$	
Pébi	Pi	$2^{50} = 1\ 125\ 899\ 906\ 842\ 624$	

Préfixes décimaux (préfixes SI)

Préfixes décimaux (préfixes SI)			
Nom	Symb.	Puissance de 10	Err.
Kilo	k	$10^3 = 1000$	2 %
Méga	М	$10^6 = 1000000$	5 %
Giga	G	$10^9 = 1000000000$	7 %
Téra	Т	$10^{12} = 1000000000000$	10 %
Péta	Р	$10^{15} = 1000000000000000$	13 %

Remarques

Dans ce deuxième tableau, l'erreur indiquée dans la colonne de droite est celle effectuée quand on utilise un préfixe SI à la place d'un préfixe binaire. L'usage de cette norme ne s'est pas encore généralisé.

Remarques

Dans ce deuxième tableau, l'erreur indiquée dans la colonne de droite est celle effectuée quand on utilise un préfixe SI à la place d'un préfixe binaire. L'usage de cette norme ne s'est pas encore généralisé.

Microsoft Windows continue à utiliser à tort les préfixes SI : par exemple 1 ko = 1024 o au lieu de 1000 o. D'autres, comme les systèmes d'exploitation libres de type GNU/Linux, adoptent les préfixes binaires.

Sommaire

- Problématique
- Système de numération
 - Base de la numération
 - Changement de bases
- 3 Le codage des nombres
- 4 Les caractères

Base de la numération

Définition

Une base $B_N = \{C_i\}_{i=1}^{i=N}$ est un système libre de N éléments (chiffres ou caractères) tel que:

$$\forall a \in \mathbb{N}, \exists m \in \mathbb{N}/a = \sum_{j=0}^{m} C_j.N^j$$
 avec $C_j \in \{C_i\}_{i=1}^N$

$$\forall a \in \mathbb{R}^+, \exists \{C_j\}_{j=-\infty}^{\infty}/a = \sum_{j=-\infty}^{+\infty} C_j.N^j$$
 avec $C_j \in \{C_i\}_{i=1}^N$

14/58

Base décimale :

$$B_{10} = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9$$

Base décimale :

$$B_{10} = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9$$

Base binaire:

$$B_2 = 0, 1$$

Les chiffres sont alors appelés bit pour binary digit

Base décimale :

$$B_{10} = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9$$

Base binaire:

$$B_2 = 0, 1$$

Les chiffres sont alors appelés bit pour binary digit

Base hexadécimale :

$$B_{16} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$$

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Base décimale B ₁₀	Base binaire B ₂	Base hexadécimale B ₁₆
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	10000	10

Exemples

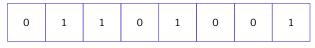
Base 10	(2024)10	$2.10^3 + 0.10^2 + 2.10^1 + 4.10^0$
Base 2	(11111101000)2	$1.2^{10} + 1.2^9 + 1.2^8 + 1.2^7 + 1.2^6 + 1.2^5 + 0.2^4 + 1.2^3 + 0.2^2 + 0.2^1 + 0.2^0$
Base Hex	(7E8) ₁₆	$7.16^2 + 14.16^1 + 8.16^0$

REMARQUE: Pour différencier les bases, on reporte le numéro de la base

en indice : $(2024)_{10}$

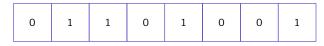
En base B_N , chaque chiffre est affecté d'un poids (N^n) avec n le nombre de chiffres à sa droite. Pour obtenir le nombre en base 10, il suffit de faire la somme des chiffres du nombre en base N multipliés par leur poids.

En base B_N , chaque chiffre est affecté d'un poids (N^n) avec n le nombre de chiffres à sa droite. Pour obtenir le nombre en base 10, il suffit de faire la somme des chiffres du nombre en base N multipliés par leur poids.



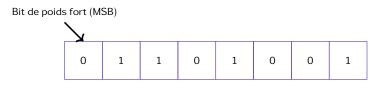
$$0 \times 2^7 \quad 1 \times 2^6 \quad 1 \times 2^5 \quad 0 \times 2^4 \quad 1 \times 2^3 \quad 0 \times 2^2 \quad 0 \times 2^1 \quad 1 \times 2^0$$

En base B_N , chaque chiffre est affecté d'un poids (N^n) avec n le nombre de chiffres à sa droite. Pour obtenir le nombre en base 10, il suffit de faire la somme des chiffres du nombre en base N multipliés par leur poids.



Poids respectifs $\longrightarrow 0 \times 2^7 \quad 1 \times 2^6 \quad 1 \times 2^5 \quad 0 \times 2^4 \quad 1 \times 2^3 \quad 0 \times 2^2 \quad 0 \times 2^1 \quad 1 \times 2^0$

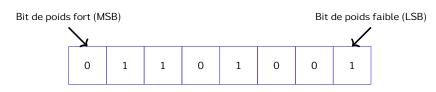
En base B_N , chaque chiffre est affecté d'un poids (N^n) avec n le nombre de chiffres à sa droite. Pour obtenir le nombre en base 10, il suffit de faire la somme des chiffres du nombre en base N multipliés par leur poids.



Poids respectifs $\longrightarrow 0 \times 2^7 \quad 1 \times 2^6 \quad 1 \times 2^5 \quad 0 \times 2^4 \quad 1 \times 2^3 \quad 0 \times 2^2 \quad 0 \times 2^1 \quad 1 \times 2^0$

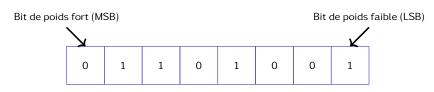
En base B_N , chaque chiffre est affecté d'un poids (N^n) avec n le nombre de chiffres à sa droite. Pour obtenir le nombre en base 10, il suffit de faire la somme des chiffres du nombre en base N multipliés par leur poids.

En base B_N , chaque chiffre est affecté d'un poids (N^n) avec n le nombre de chiffres à sa droite. Pour obtenir le nombre en base 10, il suffit de faire la somme des chiffres du nombre en base N multipliés par leur poids.



Poids respectifs $\longrightarrow 0 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

En base B_N , chaque chiffre est affecté d'un poids (N^n) avec n le nombre de chiffres à sa droite. Pour obtenir le nombre en base 10, il suffit de faire la somme des chiffres du nombre en base N multipliés par leur poids.



Poids respectifs $\longrightarrow 0 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 105$

Passage de la base décimale B_{10} à une base B_N

La passage de la base décimale B_{10} à une base B_N se fait en recherchant la puissance de N immédiatement inférieure au nombre décimal à convertir, puis la puissance de N immédiatement inférieure au reste, et ainsi de suite jusqu'à un reste nul.

$$a = \sum_{j=0}^{m} a_j.N^j$$

En factorisant par N, on obtient :

$$a = N \cdot \left(\sum_{j=0}^{m-1} a_{j+1} \cdot N^j \right) + a_0$$

Le reste de la division de a par N est égale au coefficient a_0 . Par division successive par N, on obtient les autres cœfficients associés aux puissances de B_N :

$$a = N \cdot \left(N \cdot \left(\sum_{j=0}^{m-2} a_{j+2} \cdot N^j \right) + a_1 \right) + a_0$$

Exemple:
$$(105)_{10} \Leftrightarrow (?)_2$$

$$105 = 52 \times 2 + 1$$

Exemple:
$$(105)_{10} \Leftrightarrow (?)_2$$

$$105 = 52 \times 2 + 1$$

$$52 = 26 \times 2 + 0$$

Exemple:
$$(105)_{10} \Leftrightarrow (?)_2$$

$$105 = 52 \times 2 + 1$$

$$52 = 26 \times 2 + 0$$

$$26 = 13 \times 2 + 0$$

Exemple:
$$(105)_{10} \Leftrightarrow (?)_2$$

$$105 = 52 \times 2 + 1$$

$$52 = 26 \times 2 + 0$$

$$26 = 13 \times 2 + 0$$

$$13 = 6 \times 2 + 1$$

Exemple:
$$(105)_{10} \Leftrightarrow (?)_2$$

$$105 = 52 \times 2 + 1$$

$$52 = 26 \times 2 + 0$$

$$26 = 13 \times 2 + 0$$

$$13 = 6 \times 2 + 1$$

$$6 = 3 \times 2 + 0$$

$$105 = 52 \times 2 + 1$$

$$52 = 26 \times 2 + 0$$

$$26 = 13 \times 2 + 0$$

$$13 = 6 \times 2 + 1$$

$$6 = 3 \times 2 + 0$$

$$3 = 1 \times 2 + 1$$

$$105 = 52 \times 2 + 1$$

$$52 = 26 \times 2 + 0$$

$$26 = 13 \times 2 + 0$$

$$13 = 6 \times 2 + 1$$

$$6 = 3 \times 2 + 0$$

$$3 = 1 \times 2 + 1$$

$$1 = 0 \times 2 + 1$$

$$105 = 52 \times 2 + 1$$

$$52 = 26 \times 2 + 0$$

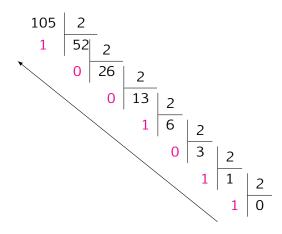
$$26 = 13 \times 2 + 0$$

$$13 = 6 \times 2 + 1$$

$$6 = 3 \times 2 + 0$$

$$3 = 1 \times 2 + 1$$

$$1 = 0 \times 2 + 1$$



$$105 = 52 \times 2 + 1$$

$$52 = 26 \times 2 + 0$$

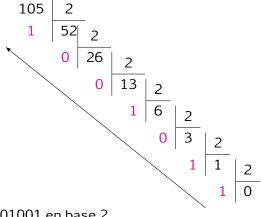
$$26 = 13 \times 2 + 0$$

$$13 = 6 \times 2 + 1$$

$$6 = 3 \times 2 + 0$$

$$3 = 1 \times 2 + 1$$

$$1 = 0 \times 2 + 1$$



Ainsi 105 en base 10 s'écrit 1101001 en base 2.

Passage de la base 2^p à la base 2^q

Pour le passage de la base 2^p à la base 2^q , le plus simple est de repasser par la base 2, pour convertir chaque chiffre en son équivalent binaire.

Ainsi chaque chiffre de la base 2^p se code en p chiffres de la base binaire (p bits). En convertissant le nombre binaire par paquets de q chiffres (bits), nous obtenons les chiffres du nombre en base q.

$$(A)_8 = 247$$

22/58

$$(A)_8 = 247$$

 $(A)_8 = 2 4 7$
 $010 100 111$

$$(A)_8 = 247$$

 $(A)_8 = \underbrace{2 \quad 4 \quad 7}_{010 \quad 100 \quad 111}$
 $(A)_2 = 10100111$

22/58

Sommaire

- Problématique
- 2 Système de numération
- 3 Le codage des nombres
 - Les nombres entiers naturels
 - Les nombres entiers relatifs
 - Les nombres rationnels
- 4 Les caractères

Les nombres entiers naturels

DÉFINITION: Codage à champ fixe

Codage sur un nombre de bits n constant (exemple n=8 pour l'octet). La position occupée par le bits (en partant de 0 et de droite), correspond à son poids en puissance de 2.

Il est alors possible de représenter un entier naturel N tel que $0 \le N \le 2^n - 1$.

Un entier naturel codé sur un octet est forcément compris entre 0 et 255. Lorsqu'il est codé sur 32 bits, alors il est compris entre 0 et 4294967295.

L'Unité Arithmétique Logique (UAL) du processeur est capable de traiter des mots binaires de 32 bits (ou 64 bits).

Un entier naturel codé sur un octet est forcément compris entre 0 et 255. Lorsqu'il est codé sur 32 bits, alors il est compris entre 0 et 4294967295.

L'Unité Arithmétique Logique (UAL) du processeur est capable de traiter des mots binaires de 32 bits (ou 64 bits).

A la suite d'opérations arithmétiques, des dépassements de capacité (**overflow**) sont possibles. Ils sont en général évités pour les entiers naturels en découpant si nécessaire le mot binaire en plusieurs de taille acceptable par le processeur, le nombre est recomposé par la suite.

Un entier naturel codé sur un octet est forcément compris entre 0 et 255. Lorsqu'il est codé sur 32 bits, alors il est compris entre 0 et 4294967295.

L'Unité Arithmétique Logique (UAL) du processeur est capable de traiter des mots binaires de 32 bits (ou 64 bits).

A la suite d'opérations arithmétiques, des dépassements de capacité (overflow) sont possibles. Ils sont en général évités pour les entiers naturels en découpant si nécessaire le mot binaire en plusieurs de taille acceptable par le processeur, le nombre est recomposé par la suite.

Les langages de programmation comme Python, peuvent donc traiter des nombres entiers de taille quasiment infinie.

Les nombres entiers relatifs

Signe et valeur absolue (idée 0)

On sacrifie 1 bit pour représenter le signe : + est représenté par 0 et - par 1.

Les nombres entiers relatifs

Signe et valeur absolue (idée 0)

On sacrifie 1 bit pour représenter le signe : + est représenté par 0 et - par 1.

On code ainsi avec un mot de n bits les entiers relatifs Z tels que : $-(2^{n-1}-1) \le Z \le 2^{n-1}-1$.

PROBLÈME:

Signe et valeur absolue (idée 0)

On sacrifie 1 bit pour représenter le signe : + est représenté par 0 et - par 1 .

On code ainsi avec un mot de n bits les entiers relatifs Z tels que : $-(2^{n-1}-1) \le Z \le 2^{n-1}-1$.

PROBLÈME:

on a deux représentations différentes de 0 :

Signe et valeur absolue (idée 0)

On sacrifie 1 bit pour représenter le signe : + est représenté par 0 et - par 1 .

On code ainsi avec un mot de n bits les entiers relatifs Z tels que : $-(2^{n-1}-1) \le Z \le 2^{n-1}-1$.

PROBLÈME:

- on a deux représentations différentes de 0 :
 - 000...0

Signe et valeur absolue (idée 0)

On sacrifie 1 bit pour représenter le signe : + est représenté par 0 et - par 1.

On code ainsi avec un mot de n bits les entiers relatifs Z tels que : $-(2^{n-1}-1) \le Z \le 2^{n-1}-1$.

PROBLÈME:

- on a deux représentations différentes de 0 :
 - 000...0
 - 10 . . 0.

26 / 58

Signe et valeur absolue (idée 0)

On sacrifie 1 bit pour représenter le signe : + est représenté par 0 et - par 1 .

On code ainsi avec un mot de n bits les entiers relatifs Z tels que : $-(2^{n-1}-1) \le Z \le 2^{n-1}-1$.

PROBLÈME:

- on a deux représentations différentes de 0 :
 - 000...0
 - 0 10 . . 0.
- Il est difficile d'effectuer des opérations sur les nombres car le bit de signe doit être traité à part.

26 / 58

Complément logique (ou complément à 1 - idée 1)

Dans le cas du complément logique, les nombres positifs sont simplement représentés par leur écriture en base 2. Pour les nombres négatifs, on remplace chaque bit à 0 par 1 et vice versa.

Exemple: Représentation de -3 sur 4 bits

3 est représenté par 0011. Donc en complément à 1, -3 sera représenté par 1100.

 si le bit de gauche est 0, le nombre est positif et on a sa représentation en binaire

- si le bit de gauche est 0, le nombre est positif et on a sa représentation en binaire
- si le bit de gauche est 1, alors le nombre est négatif et pour trouver sa valeur absolue, on inverse les bits.

- si le bit de gauche est 0, le nombre est positif et on a sa représentation en binaire
- si le bit de gauche est 1, alors le nombre est négatif et pour trouver sa valeur absolue, on inverse les bits.

On code ainsi avec un mot de n bits les entiers relatifs Z tels que : $-(2^{n-1}-1) \le Z \le 2^{n-1}-1$.

EXEMPLE: 6-3=3 avec 6=0110 et 3=0011.

Calcul en décimal	Calcul en binaire		
6	0110		0010
Facile, on connaît : <u>- 3</u>	<u>+ 1100</u>	\Rightarrow	<u>+ 0001</u>
3	1 0010		0011

Problème: 0 est codé de deux façons différentes :

- 00 . . . 0
- 11 . . .1

Même méthode que précédemment, sauf qu'il faut encore ajouter 1 au résultat pour la représentation des entiers négatifs. Ainsi :

 traduire la valeur absolue du nombre négatifs en binaire. Ainsi : sur 4 bits 3 → 0011.

- traduire la valeur absolue du nombre négatifs en binaire. Ainsi : sur 4 bits $3 \rightarrow 0011$.
- prendre le complément logique de nombre binaire obtenu : 0011 → 1100.

- traduire la valeur absolue du nombre négatifs en binaire. Ainsi : sur 4 bits $3 \rightarrow 0011$.
- prendre le complément logique de nombre binaire obtenu : $0011 \rightarrow 1100$.
- ajouter 1 au nombre complémenté: 1100+0001 → 1101.

- traduire la valeur absolue du nombre négatifs en binaire. Ainsi : sur 4 bits $3 \rightarrow 0011$.
- prendre le complément logique de nombre binaire obtenu : $0011 \rightarrow 1100$.
- ajouter 1 au nombre complémenté: $1100+0001 \rightarrow 1101$.
- il est possible alors de faire les opérations.

En décimal	En binaire
6	0110
- 3	+ 1101
3	1 0011

REMARQUE: 0 est codé d'une seule façon: -0 est représenté par 0000. En effet, 1111+0001=10000 mais on ne retient que les 4 bits de droite.

 si le bit de gauche est 0, le nombre est positif et on a sa représentation en binaire;

- si le bit de gauche est 0, le nombre est positif et on a sa représentation en binaire;
- si le bit de gauche est 1, alors le nombre est négatif et pour trouver sa valeur absolue, on inverse les bits et on ajoute 1.

- si le bit de gauche est 0, le nombre est positif et on a sa représentation en binaire;
- si le bit de gauche est 1 , alors le nombre est négatif et pour trouver sa valeur absolue, on inverse les bits et on ajoute 1.

Ainsi avec un mot de n bits, on code les entiers relatifs Z tels que : $-2^{n-1} \le Z \le 2^{n-1} - 1$.

- si le bit de gauche est 0, le nombre est positif et on a sa représentation en binaire;
- si le bit de gauche est 1 , alors le nombre est négatif et pour trouver sa valeur absolue, on inverse les bits et on ajoute 1.

Ainsi avec un mot de n bits, on code les entiers relatifs Z tels que : $-2^{n-1} \le Z \le 2^{n-1} - 1$.

REMARQUE: on gagne un nombre négatif par rapport au complément à un.

Nombres à virgule et bases

On peut ajouter une partie fractionnaire à un nombre dans sa représentation en base N en ajoutant des puissances négatives de N. Les chiffres obtenus seront ajoutés à la suite et séparés par une virgule.

Nombres à virgule et bases

On peut ajouter une partie fractionnaire à un nombre dans sa représentation en base N en ajoutant des puissances négatives de N. Les chiffres obtenus seront ajoutés à la suite et séparés par une virgule.

EXEMPLE:

Nombres à virgule et bases

On peut ajouter une partie fractionnaire à un nombre dans sa représentation en base N en ajoutant des puissances négatives de N. Les chiffres obtenus seront ajoutés à la suite et séparés par une virgule.

EXEMPLE:

 $(63,5)_{(10)}$ est l'écriture en base 10 de $6.10^1 + 3.10^0 + 5.10^{-1}$.

Il n'y a pas forcément de solution exacte dans le codage de la partie fractionnaire d'un nombre décimal et le nombre de puissances négatives dépend des capacités de la machine et de la précision souhaitée.

On code ainsi avec un mot de n bits dont k bits pour la partie fractionnaire, les réels R tels que:

$$-2^{n-1-k} < R < 2^{n-1-k} - 2^{-k}$$

Il n'y a pas forcément de solution exacte dans le codage de la partie fractionnaire d'un nombre décimal et le nombre de puissances négatives dépend des capacités de la machine et de la précision souhaitée.

On code ainsi avec un mot de n bits dont k bits pour la partie fractionnaire, les réels R tels que :

$$-2^{n-1-k} \le R \le 2^{n-1-k} - 2^{-k}$$

Le codage en virgule fixe (fixed point) sur n bits, ne permet de représenter qu'un intervalle de 2^n valeurs. Pour un grand nombre d'applications, cet intervalle est trop restreint. La représentation à virgule flottante a été introduite pour répondre à ce besoin et améliorer la précision des calculs.

Virgule flottante (floating point)

On peut représenter les nombres sous la forme d'un triplet (s,e,m): $x = s.m.B^e$, avec B la base. Dans ce triplet, s est le signe, e est l'exposant et m est la mantisse. Ce triplet est assemblé dans l'ordre signe, exposant, mantisse pour former un nombre.

Virgule flottante (floating point)

On peut représenter les nombres sous la forme d'un triplet (s,e,m): $x = s.m.B^e$, avec B la base. Dans ce triplet, s est le signe, e est l'exposant et m est la mantisse. Ce triplet est assemblé dans l'ordre signe, exposant, mantisse pour former un nombre.

La norme IEEE a 754 définit alors le codage, avec B=2 (nombres codés en binaire), d'un nombre en simple précision sur 32 bits et en double précision . sur 64 bits

a. Institute of Electrical and Electronics Engineers

Le signe

Le signe $s=\pm 1$ est codé sur 1 bit (MSB le bit de poids le plus fort):

- 0 pour positif
- 1 pour négatif

L'exposant

L'exposant e est un entier codé sur 8 bits en simple précision, 11 en double précision.

L'exposant peut être positif ou négatif. Cependant, la représentation habituelle des nombres signés (complément à 2) rendrait la comparaison entre les nombres flottants un peu plus difficile.

L'exposant

L'exposant e est un entier codé sur 8 bits en simple précision, 11 en double précision.

L'exposant peut être positif ou négatif. Cependant, la représentation habituelle des nombres signés (complément à 2) rendrait la comparaison entre les nombres flottants un peu plus difficile.

Pour régler ce problème, l'exposant est décalé, afin de le stocker sous forme d'un nombre non signé. Ce décalage de $2^{n_e-1}-1$ est appelé biais (n_e représente le nombre de bits de l'exposant); il s'agit donc d'une valeur constante une fois que le nombre de bits n_e est fixé.

La mantisse

La mantisse m est un nombre à virgule tel que $m \in [1, 2[$, codé sur 23 bits en simple précision, 52 en double précision.

En base binaire, m peut toujours s'écrire m=1,... Le chiffre 1 n'a pas besoin d'être représenté. Seuls les chiffres après la virgule de la mantisse sont codés en binaire.

IEEE 754 simple précision : sur 32 bits

s:1 bit; e:8 bits; m:23 bits

IEEE 754 simple précision : sur 64 bits

s:1 bit; e:11 bits; m:52 bits

Exemple

EXEMPLE: représenter 525,5 au format IEEE 754 simple précision.

• Ecrire 525,5 en base $2:(525,5)_{(10)}=(1000001101,1)_{(2)}$

Exemple

EXEMPLE: représenter 525,5 au format IEEE 754 simple précision.

- Ecrire 525,5 en base 2: $(525,5)_{(10)} = (1000001101,1)_{(2)}$
- Trouver l'exposant : $(525,5)_{(10)} = (1,0000011011)_{(2)}.2^9$

Exemple

EXEMPLE:: représenter 525,5 au format IEEE 754 simple précision.

- Ecrire 525,5 en base 2: $(525,5)_{(10)} = (1000001101,1)_{(2)}$
- Trouver l'exposant : $(525,5)_{(10)} = (1,0000011011)_{(2)}.2^9$
- Identifier le triplet (s, e, m):

Exemple:: représenter 525,5 au format IEEE 754 simple précision.

- Ecrire 525,5 en base 2: $(525,5)_{(10)} = (1000001101,1)_{(2)}$
- Trouver l'exposant : $(525,5)_{(10)} = (1,0000011011)_{(2)}.2^9$
- Identifier le triplet (s, e, m):
 - \circ s = 0 car le nombre est positif

Exemple:: représenter 525,5 au format IEEE 754 simple précision.

- Ecrire 525,5 en base 2: $(525,5)_{(10)} = (1000001101,1)_{(2)}$
- Trouver l'exposant: $(525,5)_{(10)} = (1,0000011011)_{(2)}.2^9$
- Identifier le triplet (s, e, m):
 - s = 0 car le nombre est positif

$$\circ \ e_b = e + \underbrace{2^{n_e - 1} - 1}_{biais} = 9 + 2^{8 - 1} - 1 = (136)_{(10)} = (10001000)_{(2)} \text{ en}$$

base 2 sur 8 bits

EXEMPLE:: représenter 525,5 au format IEEE 754 simple précision.

- Ecrire 525,5 en base 2: $(525,5)_{(10)} = (1000001101,1)_{(2)}$
- Trouver l'exposant : $(525,5)_{(10)} = (1,0000011011)_{(2)}.2^9$
- Identifier le triplet (s, e, m):
 - \circ s = 0 car le nombre est positif

o
$$e_b = e + \underbrace{2^{n_e - 1} - 1}_{biais} = 9 + 2^{8 - 1} - 1 = (136)_{(10)} = (10001000)_{(2)}$$
 en

base 2 sur 8 bits

 \circ $m = (000001101100000000000000)_{(2)}$

EXEMPLE: représenter 525,5 au format IEEE 754 simple précision.

- Ecrire 525,5 en base 2: $(525,5)_{(10)} = (1000001101,1)_{(2)}$
- Trouver l'exposant : $(525,5)_{(10)} = (1,0000011011)_{(2)}.2^9$
- Identifier le triplet (s, e, m):
 - s = 0 car le nombre est positif

o
$$e_b = e + \underbrace{2^{n_e - 1} - 1}_{biais} = 9 + 2^{8 - 1} - 1 = (136)_{(10)} = (10001000)_{(2)}$$
 en

base 2 sur 8 bits

- $om=(00000110110000000000000)_{(2)}$
- Assembler: $(525,5)_{(10)} = (0\ 10001000\ 00000110110000000000000)_{(2)}$

Dépassement de capacité et nombres dénormalisés

En arithmétique à virgule flottante, on peut obtenir un résultat valable, ou alors rencontrer un problème de dépassement par valeur supérieure (overflow) lorsque le résultat est trop grand pour pouvoir être représenté, ou par valeur inférieure (underflow) lorsque le résultat est trop petit.

Dépassement de capacité et nombres dénormalisés

En arithmétique à virgule flottante, on peut obtenir un résultat valable, ou alors rencontrer un problème de dépassement par valeur supérieure (overflow) lorsque le résultat est trop grand pour pouvoir être représenté, ou par valeur inférieure (underflow) lorsque le résultat est trop petit.

EXEMPLE: sur 4 bits, que donne 5+4?

Une des parties précédentes décrit comment coder des nombres avec un exposant biaisé e_b strictement compris entre 0 et Val_Max (255 en simple précision et 2047 en double précision). Ainsi, si $e_b \in \{0, Val_Max\}$, alors on est dans l'un des cas suivants :

• $e_b = 0$, m = 0: le nombre est ± 0 (représentation dénormalisée)

- $e_b = 0$, m = 0: le nombre est ± 0 (représentation dénormalisée)
- $e_b = Val_Max$, m = 0, $s = \pm 1$: c'est la représentation de $\pm \infty$

- $e_b = 0$, m = 0: le nombre est ± 0 (représentation dénormalisée)
- $e_b = Val_Max$, m = 0, $s = \pm 1$: c'est la représentation de $\pm \infty$
- e_b = Val₋Max, m ≠ 0 : NaN (Not a Number), réservé aux codes d'erreurs (par exemple résultat d'une division par 0)

- $e_b = 0$, m = 0: le nombre est ± 0 (représentation dénormalisée)
- $e_b = Val_Max$, m = 0, $s = \pm 1$: c'est la représentation de $\pm \infty$
- e_b = Val₋Max, m ≠ 0 : NaN (Not a Number), réservé aux codes d'erreurs (par exemple résultat d'une division par 0)
- $e_b = 0$, $m \neq 0$: on dit que la représentation est **dénormalisée**; dans ce cas, le nombre codé est $x = \pm 0$, m. $B^{(biais-1)}$.

Cette situation arrive lorsqu'un résultat est trop petit pour pouvoir être représenté. Le standard IEEE 754 résout partiellement le problème en autorisant dans ce cas une représentation dénormalisée.

Cette situation arrive lorsqu'un résultat est trop petit pour pouvoir être représenté. Le standard IEEE 754 résout partiellement le problème en autorisant dans ce cas une représentation dénormalisée.

Une représentation dénormalisée est caractérisée par le fait d'avoir un code d'exposant complètement nul, ce qui est interprété comme une indication du fait que le bit de poids fort de la mantisse, implicite, est cette fois à 0 au lieu d'être à 1. De cette façon, le plus petit nombre "exprimable" en simple précision est : $2^{-23} \times 2^{2^{8-1}-1} = 2^{-23-127} = 2^{-150} \approx 10^{-45}$.

La norme IEEE spécifie quatre modes d'arrondi :

• au plus près (si le nombre est entre deux, il est arrondi à la valeur la plus proche avec un bit de poids faible à 0 (mode d'arrondi par défaut).

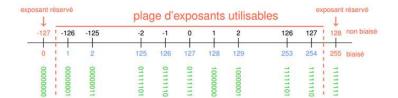
- au plus près (si le nombre est entre deux, il est arrondi à la valeur la plus proche avec un bit de poids faible à 0 (mode d'arrondi par défaut).
- vers 0

- au plus près (si le nombre est entre deux, il est arrondi à la valeur la plus proche avec un bit de poids faible à 0 (mode d'arrondi par défaut).
- vers 0
- vers +∞

- au plus près (si le nombre est entre deux, il est arrondi à la valeur la plus proche avec un bit de poids faible à 0 (mode d'arrondi par défaut).
- vers 0
- vers +∞
- vers -∞

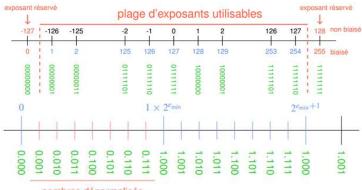
Résumé

En simple précision



Résumé

En simple précision



nombres dénormalisés

Résumé

Tableau récapitulatif

	IEEE 754 simple précision	IEEE 754 double précision			
Exposant	-126 à 127	-1022 à 1023			
Mantisse	1 à presque 2 (2 – 2 ⁻²³)	1 à presque 2 (2 – 2 ^{–52})			
Plus petit	2-126	2-1022			
nombre normalisé		2			
Plus grand	Presque 2 ¹²⁸	Presque 2 ¹⁰²⁴			
nombre normalisé	Tresque 2	Tresque 2			
Plus petit	2 ⁻¹⁴⁹ (0,0001×2 ⁻¹²⁶)	2^{-1074} (0,0001 × 2^{-1022})			
nombre dénormalisé	2 (0,0001×2)	,			
Intervalle utile	Approximativement 10 ⁻³⁸ à 10 ³⁸	Approximativement 10 ⁻³⁰⁸ à 10 ³⁰⁸			

Sommaire

- Problématique
- 2 Système de numération
- 3 Le codage des nombres
- 4 Les caractères
 - Les caractères alphanumériques
 - Le code ASCII
 - L'Unicode

Les caractères alphanumériques

Le nombre de caractères à coder est grands. On estime qu'actuellement, il y a plus de 245000 caractères assignés, 93 écritures différentes.

Les caractères alphanumériques

Le nombre de caractères à coder est grands. On estime qu'actuellement, il y a plus de 245000 caractères assignés, 93 écritures différentes.

Les caractères alphanumériques comprennent les caractères alphabétiques (de A à Z en alphabet latin), ainsi que les caractères numériques comprenant les chiffres 0 à 9 mais aussi les signes – ou +.

Les caractères alphanumériques

Le nombre de caractères à coder est grands. On estime qu'actuellement, il y a plus de 245000 caractères assignés, 93 écritures différentes.

Les caractères alphanumériques comprennent les caractères alphabétiques (de A à Z en alphabet latin), ainsi que les caractères numériques comprenant les chiffres 0 à 9 mais aussi les signes — ou +.

Il y a aussi bien d'autres caractères : ponctuation, touches clavier (espace, entrée, \ldots), \ldots

Le code ASCII

Le code ASCII (American Standard Code for Information Interchange) a été standardisé en 1963.

Le code ASCII

Le code ASCII (American Standard Code for Information Interchange) a été standardisé en 1963.

Il utilise un octet pour encoder 128 caractères : 33 caractères de contrôle, 94 caractères imprimables (lettres, chiffres, ...), l'espace. Le $8^{\grave{e}me}$ bit reste à 0.

Le code ASCII

Le code ASCII (American Standard Code for Information Interchange) a été standardisé en 1963.

Il utilise un octet pour encoder 128 caractères : 33 caractères de contrôle, 94 caractères imprimables (lettres, chiffres, ...), l'espace. Le 8^{ème} bit reste à 0.

Beaucoup de pages de codes étendent l'ASCII en utilisant le 8^{ème} bit pour définir des caractères numérotés de 128 à 255. La norme ISO/CEI 8859 fournit des extensions pour diverses langues.

Hex				Hex		Char	Hex	Dec	Char	Hex	Dec	Char
0x00	0	NULL	null	0x20	32	Space	0x40	64	9	0x60	96	,
0x01	1	SOH	Start of heading	0x21	33	1	0x41	65	A	0x61	97	a
0x02	2	STX	Start of text	0x22	34	"	0x42	66	В	0x62	98	b
0x03	3	ETX	End of text	0x23	35	#	0x43	67	C	0x63	99	C
0×04	4	EOT	End of transmission	0x24	36	\$	0x44	68	D	0x64	100	d
0×05	5	ENQ	Enquiry	0x25	37	8	0x45	69	E	0x65	101	е
0×06	6	ACK	Acknowledge	0x26	38	&	0x46	70	F	0x66	102	f
0x07	7	BELL	Bell	0x27	39	100	0x47	71	G	0x67	103	g
80x0	8	BS	Backspace	0x28	40	(0x48	72	H	0x68	104	h
0x09	9	TAB	Horizontal tab	0x29	41)	0x49	73	I	0x69	105	i
0x0A	10	LF	New line	0x2A	42	*	0x4A	74	J	0x6A	106	j
0x0B	11	VT	Vertical tab	0x2B	43	+	0x4B	75	K	0x6B	107	k
0x0C	12	FF	Form Feed	0x2C	44	,	0x4C	76	L	0x6C	108	1
0x0D	13	CR	Carriage return	0x2D	45	-	0x4D	77	M	0x6D	109	m
$0 \times 0 E$	14	so	Shift out	0x2E	46		0x4E	78	N	0x6E	110	n
$0 \times 0 F$	15	SI	Shift in	0x2F	47	/	0x4F	79	0	0x6F	111	0
0x10	16	DLE	Data link escape	0x30	48	0	0x50	80	P	0x70	112	p
0x11	17	DC1	Device control 1	0x31	49	1	0x51	81	Q	0x71	113	q
0x12	18	DC2	Device control 2	0x32	50	2	0x52	82	R	0x72	114	r
0x13	19	DC3	Device control 3	0x33	51	3	0x53	83	S	0x73	115	S
0x14	20	DC4	Device control 4	0x34	52	4	0x54	84	T	0x74	116	t
0x15	21	NAK	Negative ack	0x35	53	5	0x55	85	U	0x75	117	u
0x16	22	SYN	Synchronous idle	0x36	54	6	0x56	86	V	0x76	118	v
0x17	23	ETB	End transmission block	0x37	55	7	0x57	87	W	0x77	119	W
0x18	24	CAN	Cancel	0x38	56	8	0x58	88	X	0x78	120	x
0x19	25	EM	End of medium	0x39	57	9	0x59	89	Y	0x79	121	У
0x1A	26	SUB	Substitute	0x3A	58	:	0x5A	90	\mathbf{z}	0x7A	122	Z
0x1B	27	FSC	Escape	0x3B	59	;	0x5B	91	[0x7B	123	{
0x1C	28	FS	File separator	0x3C	60	<	0x5C	92	1	0x7C	124	
0x1D	29	GS	Group separator	0x3D	61	=	0x5D	93	1	0x7D	125	}
0x1E	30	RS	Record separator	0x3E	62	>	0x5E	94	^	0x7E	126	~
0x1F	31	US	Unit separator	0x3F	63	?	0x5F	95		0x7F	127	DEL

Latin-1

Le code ASCII ne permet d'encoder que l'alphabet latin, sans accents.

Ainsi, par exemple, l'ISO 8859-1, aussi appelée Latin-1, étend l'ASCII avec les caractères accentués utiles aux langues originaires d'Europe occidentale comme le français ou l'allemand. C'est le cas de ce cours, codé Latin-1.

Latin-1

							IS	O-885	9-1							
	x0	x1	x2	х3	x4	x5	х6	x7	x8	х9	xΑ	хB	хC	хD	хE	хF
0х	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	[HT]	LF	VT	[FF]	CR	SO	SI
1x	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2x	SP	!		#	\$	%	&		()	*	+		-		/
3х	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4x	@	Α	В	С	D	E	F	G	Н	- 1	J	K	L	М	N	0
5x	Р	Q	R	S	Т	U	V	w	х	Υ	Z	[١]	^	_
6х	`	a	b	С	d	е	f	g	h	i	j	k	- 1	m	n	0
7x	р	q	r	s	t	u	v	w	×	у	z	{	- 1	}	~	DEL
8x	PAD	НОР	ВРН	NBH	IND	NEL	SSA	ESA	HTS	HTJ	VTS	PLD	PLU	RI	552	SS3
9x	DCS	PU1	PU2	STS	ССН	MW	SPA	EPA	sos	SGCI	SCI	CSI	ST	OSC	PM	APC
Ах	NBSP	i	¢	£	¤	¥	- 1	§	-	©	ā	«	_	[-]	®	-
Вх	0	±	2	3	,	μ	1			1	ō	»	1/4	1/2	3/4	٤
Сх	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	ì	Í	Î	Ï
Dх	Đ	Ñ	Ò	Ó	ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
Ex	à	á	â	ā	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
Fx	õ	ñ	ò	ó	ô	ō	ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ

L'Unicode

La première norme date de 1991, la dernière (6.1) de 2012.

Unicode (Universal Character Set Transformation Format) code les caractères sous forme de séquences de 1 à 4 codets d'un octet chacun. La norme Unicode définit entre autres un ensemble (ou répertoire) de caractères. Chaque caractère est repéré dans cet ensemble par un index entier aussi appelé point de code. Par exemple le caractère €(euro) est le 8365ème caractère du répertoire Unicode, son index, ou point de code, est donc 8364 (on commence à compter à partir de 0).

Le répertoire Unicode peut contenir plus d'un million de caractères, ce qui est bien trop grand pour être codé par un seul octet. La norme Unicode définit donc des méthodes standardisées pour coder et stocker cet index sous forme de séquence d'octets : UTF-8 est l'une d'entre elles, avec UTF-16, UTF-32 et leurs différentes variantes.

La principale caractéristique d'UTF-8 est qu'elle est rétro-compatible avec la norme ASCII, c'est-à-dire que tout caractère ASCII se code en UTF-8 sous forme d'un unique octet, identique au code ASCII. Par exemple A (A majuscule) a pour code ASCII 65 et se code en UTF-8 par l'octet 65. Chaque caractère dont le point de code est supérieur à 127 (caractère non ASCII) se code sur 2 à 4 octets. Le caractère € (euro) se code par exemple sur 3 octets : 226, 130, et 172.

Point de				Valeur scalaire	Codage UTF-8				
Type	Caract.	code (Hex)	B 10	binaire	binaire	Base 16			
Contr.	[NUL]	U+0000	0	0000000	00000000	00			
	[US]	U+001F	0	0011111	00011111	1F			
Texte	[SP]	U+0020	32	0100000	0 0100000	20			
	Α	U+0041	65	1000001	01000001	41			
	~	U+007E	126	1111110	0 1111110	7E			
Contr.	[DEL]	U+007F	127	1111111	01111111	7F			
	[PAD]	U+0080	128	00010 000000	110 00010 10 000000	C2 80			
	[APC]	U+009F	159	00010 011111	110 00010 10 011111	C2 9F			
Texte	[NBSP]	U+00A0	160	00010 100000	110 00010 10 100000	C2 A0			
	é	U+00E9	233	00010 101001	110 00010 10 101001	C3 A9			
	??	U+07FF	2047	11111 111111	110 11111 10 111111	DF BF			
	?!	U+0800	2048	0000 100000 000000	1110 <i>0000</i> 10100000 10000000	E0 A0 80			
	€	U+20AC	8364	0010 000010 101100	1110 <i>00</i> 10 10 000010 10 101100	E2 82 AC			
		U+D7FF	55295	1101 011111 111111	1110 1101 10 111111 10 111111	ED 9F BF			

Plus d'information sur le codage d'un caractère à l'adresse suivante, en remplaçant xxxx par le code U-xxxx :

Plus d'information sur le codage d'un caractère à l'adresse suivante, en remplaçant xxxx par le code U-xxxx:

http://www.fileformat.info/info/unicode/char/xxxx/index.htm

Plus d'information sur le codage d'un caractère à l'adresse suivante, en remplaçant xxxx par le code U-xxxx:

http://www.fileformat.info/info/unicode/char/xxxx/index.htm

On y trouve également les commandes ou raccourcis pour obtenir les caractères dans différents environnement :

- Microsoft Windows[®]: Alt+xxxx
- Python : u"\ uxxxx