CLASSE DE PROBLÈMES 4

MODÉLISER, PRÉVOIR ET VÉRIFIER LES PERFORMANCES DES SYSTÈMES DE SOLIDES

1 Connaissances à avoir

2 Savoir faire

- Tableau des liaisons
- Graphe de liaison
- Schéma cinématique
- Projection dans une base
- A partir du paramétrage d'un système, déterminer le graphe des liaisons et construire le schéma cinématique
- Faire une fermeture géométrique et la projeter dans une base
- Extraire de la fermeture géométrique la relation entrée/sortie demandée

3 Fiche de synthèse

ddl	Nom de la liaison	Schéma spatial	Schéma plan	Caractéristique géométrique
0 ddl 0 tr 0 rt	Encastrement			$\forall M \in (\varepsilon)$
1 ddl 1 tr 0 rt	Glissière	Ty Tr		1 direction \vec{x} $\forall M \in (\varepsilon)$
1 ddl 0 tr 1 rt	Pivot	, , , , , , , , , , , , , , , , , , ,	────────────────────────────────────	$1 \text{ axe } (A, \vec{x})$ $\forall M \in (A, \vec{x})$
1 ddl 1 tr 1 rt	Hélicoïdale	TV X		$1 \operatorname{axe}(A, \overrightarrow{x})$ $\forall M \in (A, \overrightarrow{x})$
2 ddl 1 tr 1 rt	Pivot glissant	y x	— \$	$1 \operatorname{axe}(A, \overrightarrow{x})$ $\forall M \in (A, \overrightarrow{x})$
2 ddl 0 tr 2 rt	Rotule à doigt	y	-6	1 point A, centre de liaison

ddl	Nom de la liaison	Schéma spatial	Schéma plan	Caractéristique géométrique
3 ddl 0 tr 3 rt	Rotule	y - 1 x	\$	1 point A, centre de liaison
3 ddl 2 tr 1 rt	Appui plan	y x	/	Normal au plan \vec{y} , $\forall M \in (\varepsilon)$
4 ddl 1 tr 3 rt	Linéaire annulaire	7 - 1	\$ \$	1 axe (A, \overrightarrow{x}) , centre de sphère A
4 ddl 2 tr 2 rt	Linéaire rectiligne	y x	7 4	Normal au plan \overrightarrow{y} , Droite de contact (A, \overrightarrow{x})
5 ddl 2 tr 3 rt	Ponctuelle	y - x	4	Normal au plan \overrightarrow{y} , point de contact A

FIGURE 1 – Liaisons normalisées