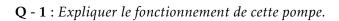
TO CI-3-2 : Modéliser les systèmes de solides prévoir et vérifier leurs performances

Exercice 1: Pompe oscillante

On considère une pompe oscillante.

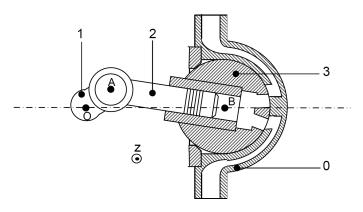
La manivelle (1) tourne par rapport au bâti (0) autour de l'axe $(0, \vec{z})$. Le piston (2) tourne par rapport à (1) autour de l'axe (A, \vec{z}) . Le bloc oscillant (3) est de forme sphérique. (2) et (3) glissent l'un dans l'autre selon la direction (AB).



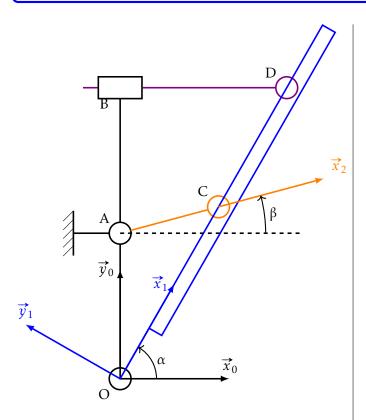
Q - 2: Tracer le graphe des liaisons.

Q - 3 : Donner un schéma cinématique de ce mécanisme.

Q - 4 : Donner un schéma cinématique d'une modélisation plane de ce mécanisme.



Exercice 2: Mécanisme à mouvement alternatif



Au bâti **0** est associé le repère $R_0(O, \vec{x_0}, \vec{y_0}, \vec{z_0})$. on pose:

$$\overrightarrow{\mathrm{OA}} = a. \overrightarrow{y_0}$$
 $\overrightarrow{\mathrm{OB}} = b. \overrightarrow{y_0}$

La pièce **1** est liée au bâti **0** par une liaison pivot d'axe $O, \vec{z_0}$. On lui attache le repère $R_1(O, \vec{x_1}, \vec{y_1}, \vec{z_0})$ et on pose:

$$\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1})$$

La biellette 2 est liée au bâti **0** par une liaison pivot d'axe $(A, \overrightarrow{z_0})$. On lui attache le repère $R_2(O, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ et on pose:

$$\overrightarrow{AC} = c. \overrightarrow{x_2}$$
 $\beta = (\overrightarrow{x_0}, \overrightarrow{x_2})$

Elle est également liée à la pièce 1 en C, par une liaison linéaire annulaire d'axe $(O, \overrightarrow{x_1})$.

Le coulisseau 3 est lié au bâti par une liaison glissière d'axe $(B, \overrightarrow{x_0})$. On pose:

$$\overrightarrow{BD} = \lambda . \overrightarrow{x_0} \quad \overrightarrow{OC} = \mu . \overrightarrow{x_1}$$

Il est également liée à la pièce 1 en D par une liaison linéaire annulaire d'axe $(O, \overrightarrow{x_1})$.

Le problème est supposé plan. L'objectif est de déterminer les relations entre les différents paramètres dans un système en chaîne fermée. Le système considéré est un mécanisme à mouvement alternatif.

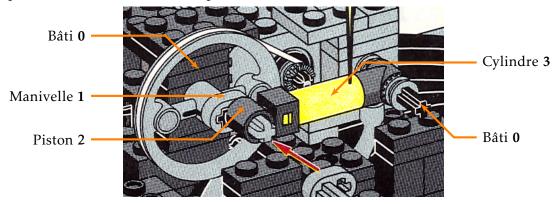
Q - **1** : *Tracer le graphe de structure (ou graphe des liaisons)*;

Q - 2 : Déterminer une relation entre α et β à l'aide d'une fermeture géométrique.

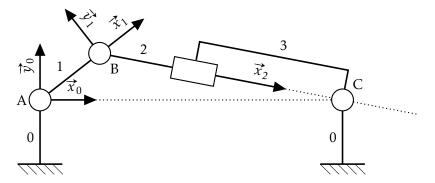
Q - **3** : Déterminer une relation entre λ et α à l'aide d'une fermeture géométrique.

Exercice 3: Compresseur LEGO Technic

Le système représenté ci-dessous est un compresseur LEGO.



Une manivelle 1 est en rotation par rapport au bâti 0 autour d'un axe (A, \vec{z}_0) , grâce à l'action d'un moteur électrique. Elle entraîne dans son mouvement le piston 2 d'une pompe pneumatique via une rotation autour de l'axe (B, \vec{z}_0) . Le piston 2 de la pompe coulisse par rapport au cylindre 3 de la pompe suivant l'axe (B, \vec{x}_2) . Enfin, le cylindre de la pompe est en rotation d'axe (C, \vec{z}_0) par rapport au bâti 0.



Le modèle cinématique de ce compresseur est représenté ci-contre.

La modélisation est plane.

Les vecteurs \vec{z}_i , non représentés sur le schéma ci-contre, sont évidemment tels que les bases $\mathcal{B}(\vec{x}_i, \vec{y}_i, \vec{z}_i)$ soient orthonormées directes.

Le système évolue dans le plan de normale \vec{z} . On associe :

- au bâti **0**, supposé fixe, le repère $\mathcal{R}_0 = (A, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ tel que $\overrightarrow{AC} = L.\vec{x}_0$
- à la manivelle 1 le repère $\mathcal{R}_1(A, \vec{x}_1, \vec{y}_1, \vec{z}_1)$ tel que $\overrightarrow{AB} = e. \vec{x}_1$
- au piston 2 le repère $\mathcal{R}_2 = (B, \vec{x}_2, \vec{y}_2, \vec{z}_2)$ tel que \vec{x}_2 soit dans la direction principale de la pièce.
- au cylindre 3 le repère $(C, \vec{x}_3, \vec{y}_3, \vec{z}_3)$ mais comme 3 est en translation avec 2 alors $\mathcal{B}_3 = \mathcal{B}_2$ d'où $\mathcal{R}_3 = (C, \vec{x}_2, \vec{y}_2, \vec{z}_2)$

 $\mathcal{L}_{1/0}$: pivot d'axe (A, \vec{z}_0) : on lui associe le paramètre β tel que $\beta = (\vec{x}_0, \vec{x}_1) = (\vec{y}_0, \vec{y}_1)$

 $\mathcal{L}_{2/1}$: pivot d'axe (B, \vec{z}_0) : on lui associe le paramètre θ tel que $\theta = (\vec{x}_1, \vec{x}_2) = (\vec{y}_1, \vec{y}_2)$

 $\mathcal{L}_{3/2}$: glissière de direction (BC): on lui associe le paramètre λ tel que $\overrightarrow{BC} = (L + \lambda). \overrightarrow{x}_2$

 $\mathcal{L}_{3/0}$: pivot d'axe (C, \vec{z}_0) : on lui associe le paramètre α tel que $\alpha = (\vec{x}_0, \vec{x}_3) = (\vec{y}_0, \vec{y}_3)$

Q - 1 : Préciser en le justifiant le nom de la liaison entre 2 et 3.

Q - 2 : Faire le graphe des liaisons de ce système.

Q - 3: Tracer les trois figures géométrales de passage des bases B0 à B1, B1 à B2 et B0 à B2.

Q - 4 : Écrire l'équation vectorielle de fermeture linéaire provenant de la fermeture géométrique et en déduire les deux équations scalaires obtenues en projetant sur les directions \vec{x}_0 et \vec{y}_0 .

Q - **5** : Déterminer la relation $\lambda(\beta)$ entre le déplacement λ du piston **2** dans le cylindre **3** et l'angle de rotation β de la manivelle **1** par rapport au bâti **0**.

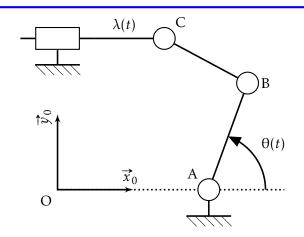
Q - 6 : Déterminer la relation $\alpha(\beta)$ entre la rotation α du cylindre **3** et l'angle de rotation β de la manivelle **1** par rapport au bâti **0**.

Q - 7 : Déterminer la course c du piston 2 dans le cylindre 3 ($c = \Delta \lambda = \lambda_{maxi} - \lambda_{mini}$).

Q - **8** : Déterminer le débattement angulaire δ du cylindre **2** ($\delta = \Delta \alpha = \alpha_{maxi} - \alpha_{mini}$).

Q - **9** : Retrouver ces deux derniers résultats graphiquement.

Exercice 4: Transformation de mouvement



$$\overrightarrow{OA} = L_1 \cdot \overrightarrow{x}_0$$
 $AB = L_2$
 $BC = L_3$
 $\overrightarrow{OC} = \lambda \cdot \overrightarrow{x} + H \cdot \overrightarrow{y}$

Q - 1 : Proposer un paramétrage du mécanisme.

Q - 2 : Tracer le graphe des liaisons de ce mécanisme.

 ${\bf Q}$ - ${\bf 3}$: Déterminer une relation entre $\lambda(t)$ et $\theta(t)$.

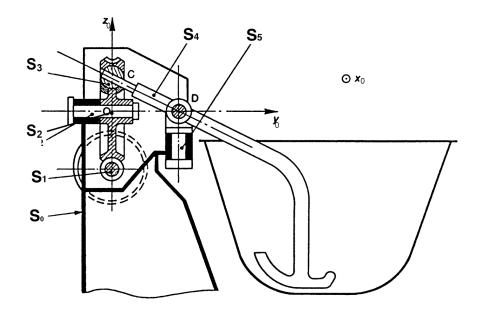
Exercice 5: Malaxeur

La figure représente de façon schématique un malaxeur.

Un moteur électrique entraîne la vis sans fin (S_1) qui engrène avec la roue (S_2) . Cette roue est en liaison pivot d'axe $(O, \overrightarrow{y}_0)$ avec le bâti (S_0) . La rotation de cette roue (S_2) va provoquer le mouvement du bras mélangeur (S_4) par l'intermédiaire des pièces (S_3) et (S_5) .

 (S_3) est en contact avec (S_2) sur une surface sphérique de centre C et avec (S_4) sur une surface cylindrique de révolution d'axe (C, \vec{z}_4) . (S_5) est liée au bras (S_4) par une liaison pivot d'axe (D, \vec{x}_5) et au bâti (S_0) par une liaison pivot d'axe (D, \vec{z}_0) .

Remarque: On ne tient pas compte dans l'exercice de la vis sans fin (S_1) .



Le repère \mathcal{R} $(O, \overrightarrow{x}_0, \overrightarrow{y}_0, \overrightarrow{z}_0)$ est lié à (S_0) , le repère \mathcal{R} $(O, \overrightarrow{x}_2, \overrightarrow{y}_2, \overrightarrow{z}_2)$ à (S_2) , le repère \mathcal{R} $(D, \overrightarrow{x}_4, \overrightarrow{y}_4, \overrightarrow{z}_4)$ à (S_4) , et le repère \mathcal{R} $(D, \overrightarrow{x}_5, \overrightarrow{y}_5, \overrightarrow{z}_5)$ à (S_5) . On note $\overrightarrow{OC} = r.\overrightarrow{z}_2$, $\overrightarrow{CD} = -\lambda.\overrightarrow{z}_4$ (λ variable), $\overrightarrow{OD} = L.\overrightarrow{y}_0$, $\alpha = (\overrightarrow{z}_0, \overrightarrow{z}_2) = (\overrightarrow{x}_0, \overrightarrow{x}_2)$, $\beta = (\overrightarrow{x}_0, \overrightarrow{x}_5) = (\overrightarrow{y}_0, \overrightarrow{y}_5)$ et $\gamma = (\overrightarrow{y}_5, \overrightarrow{y}_4) = (\overrightarrow{z}_5, \overrightarrow{z}_4)$.

- **Q** 1 : Effectuer un paramétrage de la position relative des solides les uns par rapport aux autres.
- **Q** 2 : Représenter le graphe des liaisons du mécanisme.
- **Q 3** : Par une projection judicieuse de la fermeture géométrique du système, trouver la relation entrée (angle α) sortie (angle β) du mécanisme.
- ${\bf Q}$ ${\bf 4}$: Par projection de la fermeture géométrique du mécanisme sur deux autres vecteurs, montrer que λ est constant.

