Intégration numérique des systèmes d'équations différentielles

Rappel: Résoudre un problème de Cauchy consiste à trouver la fonction \mathbf{Y} de $[t_0, t_f] \to \mathbb{R}^N$, telle que :

$$\begin{cases} \frac{d\mathbf{Y}}{dt} = \mathbf{F}(\mathbf{Y}, t) \\ & \text{où } t \in [t_0, t_f] \text{ et } \mathbf{Y_0} \in \mathbb{R}^{N} \\ \mathbf{Y}(t_0) = \mathbf{Y_0} \end{cases}$$
 (1)

Système d'équations différentielles du premier ordre

1.1 Problèmes

On considère deux problèmes pouvant se ramener à un système d'équations différentielles du premier ordre :

- succession de deux réactions chimiques du premier ordre : A $\xrightarrow{k_1}$ B $\xrightarrow{k_2}$ C
- un système masse ressort écarté de sa position d'équilibre $x_0 : m \cdot \frac{d^2 x(t)}{dt^2} = -k \cdot [x(t) x_0] \lambda \cdot \frac{dx(t)}{dt}$

1.2 Mise en équations

Le problème de cinétique chimique se ramène à :

$$\begin{cases} \frac{dA(t)}{dt} = -k_1.A(t) \\ \frac{dB(t)}{dt} = k_1.A(t) - k_2.B(t) \\ \frac{dC(t)}{dt} = k_2.B(t) \end{cases}$$

avec
$$A(0) = 0.1 \text{ mol/L}$$
, $B(0) = 0 \text{ mol/L}$ et $C(0) = 0 \text{ mol/L}$

Le problème masse-ressort se ramène à :

$$\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= v(t) \\ \frac{\mathrm{d}v(t)}{\mathrm{d}t} &= -\omega_0^2 . [x(t) - x_0] - 2.\xi.\omega_0.v(t) \end{cases}$$

avec
$$\omega_0 = \sqrt{\frac{k}{m}}$$
 et $\xi = \frac{\lambda}{2.\sqrt{k.m}}$ pour les constantes et $x_0 = 0, 1$ m, $x(0) = x_1 = 0, 12$ m et $v(0) = 0$ m/s.

Pour revenir au problème générale (1), on pose pour le problème de cinétique chimique :

$$\mathbf{Y}(t) = \begin{bmatrix} y_0(t) \\ y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A}(t) \\ \mathbf{B}(t) \\ \mathbf{C}(t) \end{bmatrix} \quad \text{avec} \quad \mathbf{Y}(t_0) = \mathbf{Y_0} = \begin{bmatrix} 0, 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{et} \quad \mathbf{F}(\mathbf{Y}, t) = \begin{bmatrix} -k_1 \cdot y_0(t) \\ k_1 \cdot y_0(t) - k_2 \cdot y_1(t) \\ k_2 \cdot y_1(t) \end{bmatrix}$$

Concernant le système masse-ressort, on pose :

$$\mathbf{Y}(t) = \left[\begin{array}{c} y_0(t) \\ y_1(t) \end{array} \right] = \left[\begin{array}{c} x(t) \\ v(t) \end{array} \right] \quad \text{avec} \quad \mathbf{Y}(t_0) = \mathbf{Y_0} = \left[\begin{array}{c} x_1 \\ 0 \end{array} \right] \quad \text{et} \quad \mathbf{F}(\mathbf{Y},t) = \left[\begin{array}{c} y_1(t) \\ \omega_0.(x_0 - y_0(t)) - 2.\xi.\omega_0.y_1(t) \end{array} \right]$$

1.3 Résolution numérique

Q - 1: Construire les fonctions Fchimie(Y, t) et Fpfd(Y, t) associées aux problèmes de cinétique chimique et au système masse-ressort. Les paramètres k_1 , k_2 , x_0 , ξ et ω_0 seront associés à des variables globales.

Comme dans le cas à une dimension, le schéma d'Euler explicite permet de passer de l'état i à l'état i+1 grâce à la relation de récurrence : $\mathbf{Y_{i+1}} = \mathbf{Y_i} + h.\mathbf{F}(\mathbf{Y_i},t_i)$, où $h = t_{i+1} - t_i$. Ainsi au temps t_{i+1} :

ullet si Y est un tableau, la récurrence en **Python** donne pour Y_{i+1} :

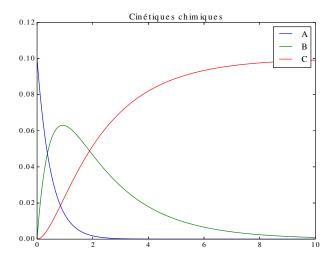
• si Y est une liste de listes, la récurrence en **Python** donne pour chaque composante j de Y_{i+1} :

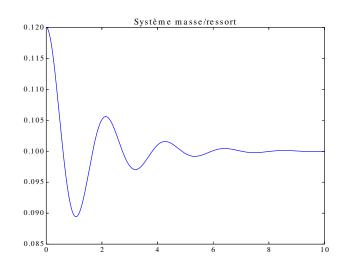
$$Y[i+1][j]=Y[i][j]+(T[i+1]-T[i])*F(Y[i],T[i])[j]$$

Q - 2: Construire, en utilisant un schéma d'Euler explicite, la fonction EulerExpDimN(F, Y0, T) qui permet de trouver l'évolution de Y(t) à partir de l'état initial Y_0 pour toutes les valeurs de t contenues dans T. La fonction doit s'adapter automatiquement à la longueur de Y0 dans les Y0 cas.

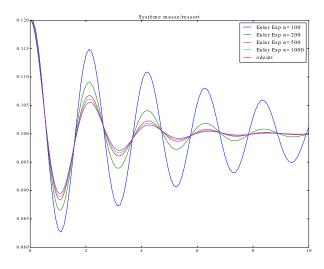
On sollicite les deux problèmes pour $t \in [0,10]$. On prend comme paramètres $(k_1;k_2) = (2;0,5)$ et $(x_0;\omega_0;\xi) = (0,1;3;0,2)$.

Q - 3: Appliquer la fonction EulerExpDimN aux problèmes de chimie et masse-ressort pour déterminer l'évolution des systèmes.



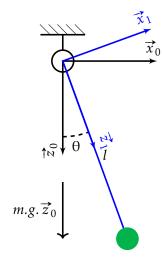


Q - **4**: Étudier l'influence du nombre de points (ou de la longueur du pas temps).



2 Simple pendule

2.1 Problématique



OBJECTIFS:

- Déterminer l'évolution au cours du temps du mouvement du pendule simple
- Comparer cette évolution dans le cas où l'équation de mouvement est linéarisée avec celui où elle ne l'est pas.

Le cours de physique permet d'établir qu'au cours du temps :

$$m.l.\ddot{\theta} + m.g.\sin(\theta) = 0$$

On considère alors le problème suivant : Trouver θ de $\mathbb{R}^+ \to \mathbb{R}$ telle que

$$\ddot{\theta}(t) + \omega^2 \cdot \sin(\theta(t)) = 0 \quad \text{avec} \quad \theta(0) = \theta_0 \quad ; \quad \dot{\theta}(0) = \Omega_0 \quad \text{et} \quad \omega = \sqrt{\frac{g}{l}}$$
 (2)

Pour l'étude, nous prendrons $t \in [0, 2.\pi]$, $\omega = 2 \text{ rad/s}$, $\theta_0 = 20^\circ$ et $\Omega_0 = 0$

2.2 Solution harmonique

2.2.1 Equation différentielle linéaire à coefficients constants

Dans le cas des petites oscillations du pendule, il est possible d'approximer $\sin(\theta)$ par θ à l'aide d'un développement limité à l'ordre 1. Le problème posé en (2) devient alors:

$$\ddot{\theta} + \omega^2 \cdot \theta = 0 \quad \text{avec} \quad \theta(0) = \theta_0 \quad ; \quad \dot{\theta}(0) = \Omega_0 \quad \text{et} \quad \omega = \sqrt{\frac{g}{l}}$$
 (3)

admettant alors comme solution générale de l'équation sans second membre $\theta(t) = \lambda \cdot \cos(\omega \cdot t) + \mu \cdot \sin(\omega \cdot t)$. Avec

les conditions initiales imposées :

$$\begin{cases} \theta(0) = \lambda = \theta_0 \\ \dot{\theta}(0) = \mu.\omega = \Omega_0 \end{cases} \Rightarrow \theta(t) = \theta_0.\cos(\omega.t) + \frac{\Omega_0}{\omega}.\sin(\omega.t)$$

2.2.2 Problème de Cauchy

Q - 5 : Transformer le problème précédent en un problème de Cauchy.

On utilise alors un vecteur de dimension $2: \mathbf{Y} = \begin{bmatrix} \theta(t) \\ \dot{\theta}(t) \end{bmatrix}$

Q - 6 : Adapter la méthode d'Euler explicite programmée dans le tp précédent pour résoudre le problème (3).

2.2.3 Récurrence directe

En calculant la dérivée seconde à partir des formes discrétisées des dérivées premières, on obtient :

$$\dot{y}(t_i) \approx \frac{Y_{i+1} - Y_i}{h} \quad \text{et} \quad \ddot{y}(t_i) \approx \frac{\dot{y}(t_{i+1}) - \dot{y}(t_i)}{h} \quad \Rightarrow \quad \ddot{y}(t_i) \approx \frac{Y_{i+2} - 2.Y_{i+1} + Y_i}{h^2}$$

 ${\bf Q}$ - 7 : Ecrire la relation de récurrence permettant d'obtenir Y_{i+2} en fonction de Y_{i+1} et Y_i .

Q - 8 : Ecrire un programme permettant de tracer l'évolution de $\theta(t)$ sur $[0,2.\pi]$ avec la relation de récurrence précédente.

2.2.4 Bibliothèque Python

La résolution numérique des équations différentielles est implantée dans **Python** . Il s'agit de la fonction **odeint**, de la bibliothèque **scipy.integrate**. Il convient donc de la charger :

from scipy.integrate import odeint
odeint(f, y0, X)

Comme dans le Tp précédent, les arguments sont :

- la fonction *f*
- le vecteur de valeurs initiales y0
- Une discrétisation X de l'intervalle sur lequel est intégrée l'équation différentielle
- **Q 9** : Comparer alors les différentes méthodes.

2.3 Cas des grands angles

Dans l'hypothèse où les angles sont grands, l'équation différentielle ne peut pas être linéarisée.

- **Q 10** : Reprendre les questions de la partie précédente avec le problème défini par (2).
- **Q 11** : Comparer l'erreur commise par la linéarisation de l'équation différentielle pour différentes valeurs de θ_0 pour $\theta_0 \in [0, 90]$.