Td CI-2-1:

Modéliser et prévoir les performances des SLCI

CI-2

Modéliser et simuler les systèmes linéaires continus invariants.

Lycée Carnot - Dijon, 2023 - 2024

Germain Gondor

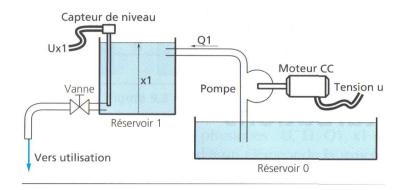
Sommaire

- Régulation d'eau
- Servocommande
- Opérations sur les schéma blocs et fonctions de transfert
- 4 Positionnement d'une antenne satellite

Sommaire

- Régulation d'eau
- Servocommande
- 3 Opérations sur les schéma blocs et fonctions de transfert
- 4 Positionnement d'une antenne satellite

Régulation d'eau



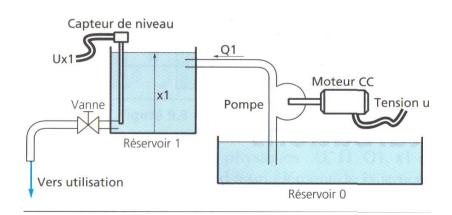
Régulation d'eau

Le système se compose de deux réservoirs :

- le réservoir 0 de réserve considéré de capacité très grande par rapport à l'utilisation : son niveau ne varie pas au cours de l'étude
- le réservoir 1 qui doit être maintenu à un niveau constant x_1 à tout moment afin de garantir la pression d'utilisation.

Un asservissement du niveau d'eau est donc réalisé.

Le débit Q_2 à travers le robinet est inconnu car il dépend de l'utilisateur. Le remplissage du réservoir 1 est assuré par une pompe actionnée par un moteur à courant continu de tension de commande U. On nomme Ω la vitesse de rotation du moteur et Q_1 le débit de la pompe.



Q - 1 : Quel composant manque-t-il sur le dessin pour réaliser l'asservissement en niveau de la pompe ? Quelles sont les grandeurs d'entrée et de sortie ?

- Q 1 : Quel composant manque-t-il sur le dessin pour réaliser l'asservissement en niveau de la pompe ? Quelles sont les grandeurs d'entrée et de sortie ?
- **Q 2**: Donner le schéma bloc fonctionnel de l'asservissement lorsque le robinet est fermé et qu'il n'y a aucune perturbation.

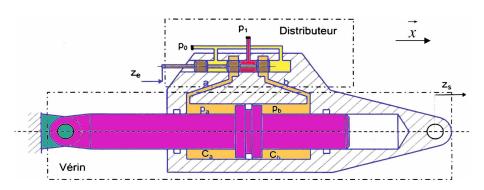
- Q 1 : Quel composant manque-t-il sur le dessin pour réaliser l'asservissement en niveau de la pompe ? Quelles sont les grandeurs d'entrée et de sortie ?
- Q 2 : Donner le schéma bloc fonctionnel de l'asservissement lorsque le robinet est fermé et qu'il n'y a aucune perturbation.
- Q 3 : Préciser toutes les grandeurs d'entrées-sorties sur le schéma bloc fonctionnel ainsi que leurs unités.

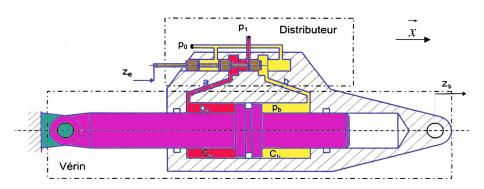
- Q 1 : Quel composant manque-t-il sur le dessin pour réaliser l'asservissement en niveau de la pompe ? Quelles sont les grandeurs d'entrée et de sortie ?
- Q 2 : Donner le schéma bloc fonctionnel de l'asservissement lorsque le robinet est fermé et qu'il n'y a aucune perturbation.
- Q 3 : Préciser toutes les grandeurs d'entrées-sorties sur le schéma bloc fonctionnel ainsi que leurs unités.
- ${\bf Q}$ ${\bf 4}$: Proposer diverses sources de perturbations dans le système.

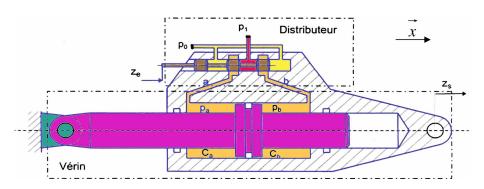
- Q 1 : Quel composant manque-t-il sur le dessin pour réaliser l'asservissement en niveau de la pompe ? Quelles sont les grandeurs d'entrée et de sortie ?
- Q 2 : Donner le schéma bloc fonctionnel de l'asservissement lorsque le robinet est fermé et qu'il n'y a aucune perturbation.
- Q 3 : Préciser toutes les grandeurs d'entrées-sorties sur le schéma bloc fonctionnel ainsi que leurs unités.
- ${\bf Q}$ ${\bf 4}$: Proposer diverses sources de perturbations dans le système.
- Q 5 : En considérant uniquement la perturbation due au débit du robinet, proposer un nouveau schéma bloc tenant compte de la perturbation.

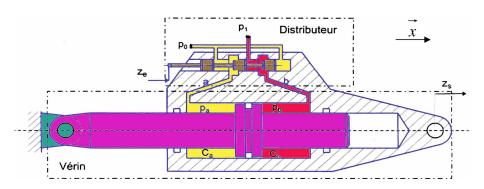
Sommaire

- 1 Régulation d'eau
- Servocommande
- 3 Opérations sur les schéma blocs et fonctions de transfer
- 4 Positionnement d'une antenne satellite









La servocommande est un système d'asservissement en position, à entrée mécanique. Elle est composée d'un distributeur à tiroir pilotant un vérin à corps mobile.

Le tiroir du distributeur reçoit la consigne $Z_{\rm e}$. Celle-ci provient de la tringlerie de commande. Ce tiroir coulisse dans le corps du distributeur et met en communication chacune des deux conduites a et b avec la pression d'alimentation p_1 , ou la pression de retour p_0 ($p1\gg p0$).

- ${f Q}$ ${f 1}$: Analyser ce système et expliquer qualitativement son fonctionnement. Notamment, vous considérerez à partir de la figure une modification de la consigne Z_e dans la sens positif, puis négatif. Pour chaque configuration, vous indiquerez l'évolution des pressions p_a , p_b et de la sortie Z_s .
- $Q 2 : Quelles \ sont \ les \ grandeurs \ de \ perturbation \ possibles \ pour \ ce \ processus.$
- Q 3 : Proposer un schéma bloc fonctionnel pour ce système.

Sommaire

- Régulation d'eau
- 2 Servocommande
- Opérations sur les schéma blocs et fonctions de transfert
 - Question 1
 - Question 2
 - Question 2
- 4 Positionnement d'une antenne satellite

Opérations sur les schéma blocs et fonctions de transfert

Q - **1** : Transformer les schémas blocs fournis (1a,2a) en schémas blocs de la forme proposée (1b,2b). Donner les fonctions de transferts des blocs $\alpha(p)$, $\beta(p)$ et $\gamma(p)$

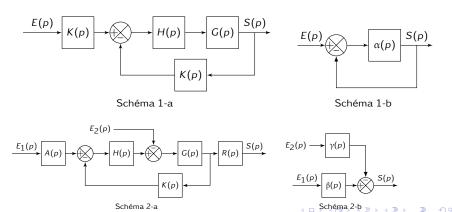
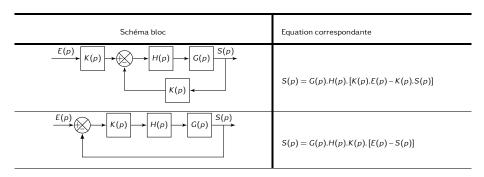


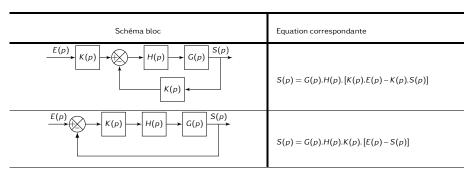
Schéma bloc Equation correspondante

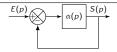
Schéma bloc	Equation correspondante
$E(p) \atop K(p) \atop \longrightarrow K(p) \atop \longrightarrow K(p) \atop \longrightarrow K(p)$	S(p) = G(p).H(p).[K(p).E(p) - K(p).S(p)]

17 / 44



 $\alpha(p) = G(p).H(p).K(p)$





$$S(p) = \alpha(p). [E(p) - S(p)]$$

Pour obtenir directement la fonction de transfert $\frac{S(p)}{E(p)}$, on peut utiliser la formule du cours de la boucle fermée :

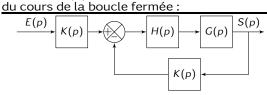
Pour obtenir directement la fonction de transfert $\frac{S(p)}{E(p)}$, on peut utiliser la formule du cours de la boucle fermée :

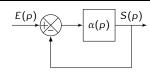
$$FTBF(p) = \frac{FTCD(p)}{1 + FTBO(p)}$$

18 / 44

Pour obtenir directement la fonction de transfert $\frac{S(p)}{E(p)}$, on peut utiliser la formule

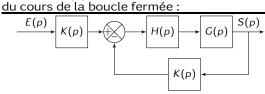
 $FTBF(p) = \frac{FTCD(p)}{1 + FTBO(p)}$

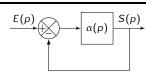




Pour obtenir directement la fonction de transfert $\frac{S(p)}{E(p)}$, on peut utiliser la formule du source de la bourle formée.

$$FTBF(p) = \frac{FTCD(p)}{1 + FTBO(p)}$$



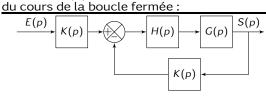


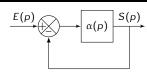
$$FTCD(p) = K(p).H(p).G(p)$$
 et $FTBO(p) = H(p).G(p).K(p)$

$$FTCD(p) = \alpha(p)$$
 et $FTBO(p) = \alpha(p)$

Pour obtenir directement la fonction de transfert $\frac{S(p)}{E(p)}$, on peut utiliser la formule du cours de la bourle formée:

$$FTBF(p) = \frac{FTCD(p)}{1 + FTBO(p)}$$





$$FTCD(p) = K(p).H(p).G(p)$$
 et $FTBO(p) = H(p).G(p).K(p)$

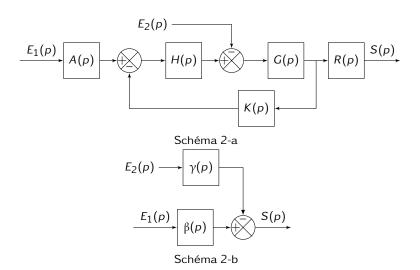
$$FTCD(p) = \alpha(p)$$
 et $FTBO(p) = \alpha(p)$

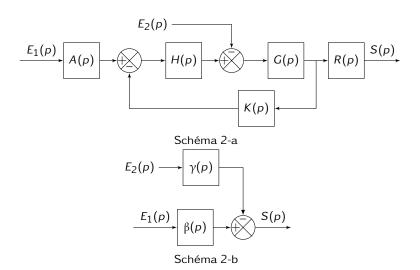
$$\frac{S(p)}{E(p)} = \frac{FTCD(p)}{1 + FTBO(p)} = \frac{K(p).H(p).G(p)}{1 + H(p).G(p).K(p)}$$

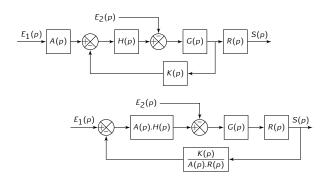
$$\frac{S(p)}{E(p)} = \frac{\alpha(p)}{1 + \alpha(p).1}$$

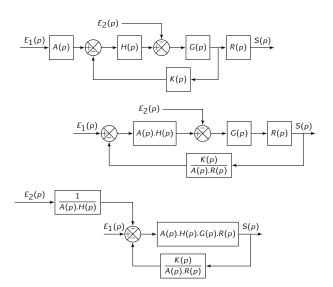
$$\frac{S(p)}{E(p)} = \frac{K(p).H(p).G(p)}{1 + H(p).G(p).K(p)} = \frac{\alpha(p)}{1 + \alpha(p)}$$

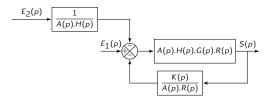
◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

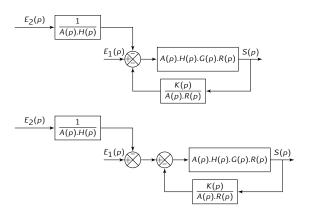


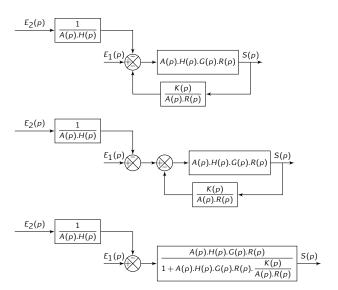


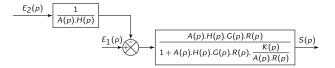


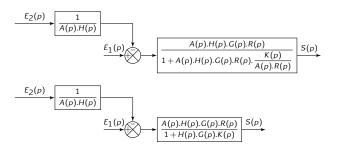


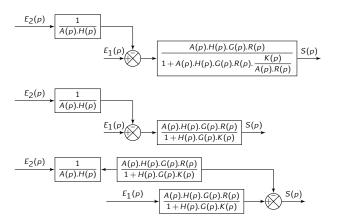


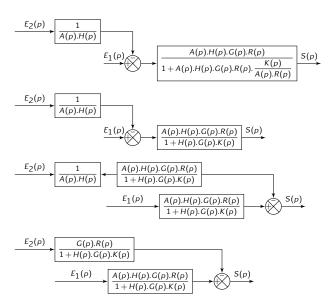


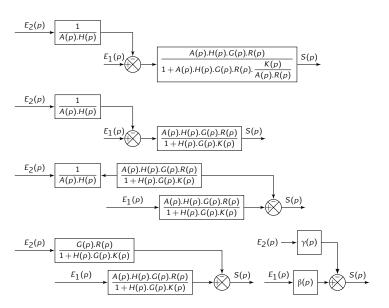






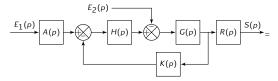






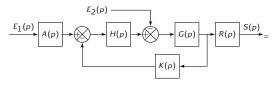
Pour trouver les fonctions de transfert de ce problème à 2 entrées, il est possible d'appliquer le principe de superposition :

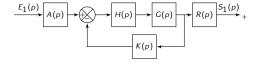
$$S(p) = S_1(p) + S_2(p) \text{ où } S_1(p) \text{ est la sortie quand } E_2(p) = 0 \text{ et } S_2(p) \text{ la sortie quand } E_1(p) = 0$$



Pour trouver les fonctions de transfert de ce problème à 2 entrées, il est possible d'appliquer le principe de superposition :

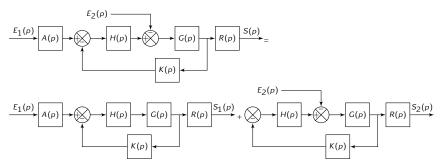
$$S(p) = S_1(p) + S_2(p) \text{ où } S_1(p) \text{ est la sortie quand } E_2(p) = 0 \text{ et } S_2(p) \text{ la sortie quand } E_1(p) = 0$$

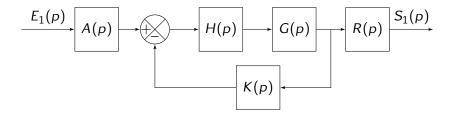




Pour trouver les fonctions de transfert de ce problème à 2 entrées, il est possible d'appliquer le principe de superposition :

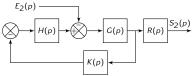
$$S(p) = S_1(p) + S_2(p) \text{ où } S_1(p) \text{ est la sortie quand } E_2(p) = 0 \text{ et } S_2(p) \text{ la sortie quand } E_1(p) = 0$$



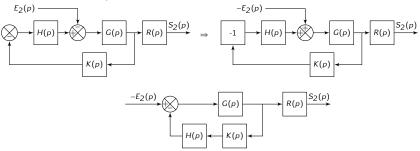


$$S_1(p) = \frac{A(p).H(p).G(p).R(p)}{1 + H(p).G(p).K(p)}.E_1(p)$$

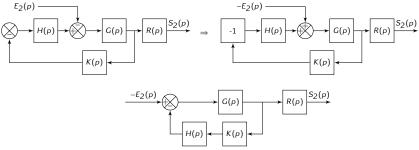
Pour le deuxième schéma bloc, nous avons :



Pour le deuxième schéma bloc, nous avons :

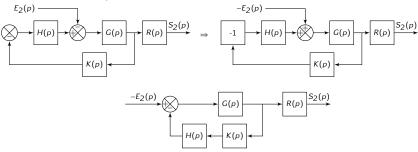


Pour le deuxième schéma bloc, nous avons :



ce qui se lit tout simplement en posant FTCD(p) = G(p).R(p) et FTBO(p) = G(p).K(p).H(p):

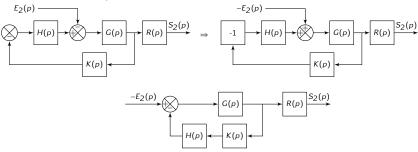
Pour le deuxième schéma bloc, nous avons :



ce qui se lit tout simplement en posant FTCD(p) = G(p).R(p) et FTBO(p) = G(p).K(p).H(p) :

$$\frac{S_2(p)}{-E_2(p)} = \frac{FTCD(p)}{1+FTBO(p)} = \frac{G(p).R(p)}{1+G(p).K(p).H(p)} \quad \Leftrightarrow \quad S_2(p) = -\frac{G(p).R(p)}{1+G(p).K(p).H(p)}.E_2(p)$$

Pour le deuxième schéma bloc, nous avons :



ce qui se lit tout simplement en posant FTCD(p) = G(p).R(p) et FTBO(p) = G(p).K(p).H(p):

$$\frac{S_2(p)}{-E_2(p)} = \frac{FTCD(p)}{1+FTBO(p)} = \frac{G(p).R(p)}{1+G(p).K(p).H(p)} \quad \Leftrightarrow \quad S_2(p) = -\frac{G(p).R(p)}{1+G(p).K(p).H(p)}.E_2(p)$$

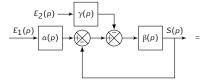
Nous avons donc :

$$S(\rho) = S_1(\rho) + S_2(\rho) = \frac{A(\rho).H(\rho).G(\rho).R(\rho)}{1 + H(\rho).G(\rho).K(\rho)}.E_1(\rho) - \frac{G(\rho).R(\rho)}{1 + G(\rho).K(\rho).H(\rho)}.E_2(\rho)$$

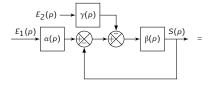
Question 2

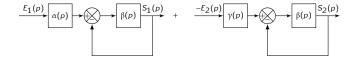
Théorème de superposition appliqué au schéma bloc en $\alpha(p)$, $\beta(p)$ et $\gamma(p)$:

Théorème de superposition appliqué au schéma bloc en $\alpha(p)$, $\beta(p)$ et $\gamma(p)$:

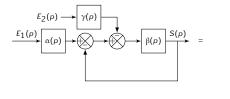


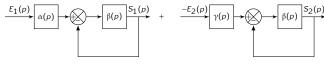
Théorème de superposition appliqué au schéma bloc en $\alpha(p)$, $\beta(p)$ et $\gamma(p)$:





Théorème de superposition appliqué au schéma bloc en $\alpha(p)$, $\beta(p)$ et $\gamma(p)$:

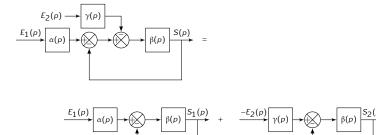




Dans les deux cas, nous avons $D(p) = \beta(p)$ et R(p) = 1, donc :

$$\frac{S_1(\rho)}{E_1(\rho)} = \alpha(\rho). \frac{\beta(\rho)}{1+\beta(\rho).1} = \frac{\alpha(\rho).\beta(\rho)}{1+\beta(\rho)} \qquad \text{et} \qquad \frac{S_2(\rho)}{-E_2(\rho)} = \gamma(\rho). \frac{\beta(\rho)}{1+\beta(\rho).1} = \frac{\gamma(\rho).\beta(\rho)}{1+\beta(\rho)}$$

Théorème de superposition appliqué au schéma bloc en $\alpha(p)$, $\beta(p)$ et $\gamma(p)$:

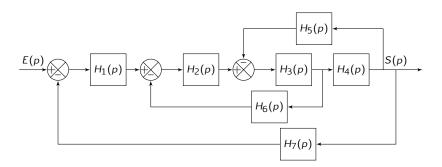


Dans les deux cas, nous avons $D(p) = \beta(p)$ et R(p) = 1, donc :

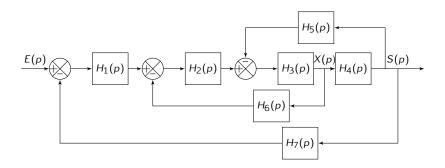
$$\frac{S_1(p)}{E_1(p)} = \alpha(p). \frac{\beta(p)}{1+\beta(p).1} = \frac{\alpha(p).\beta(p)}{1+\beta(p)} \qquad \text{et} \qquad \frac{S_2(p)}{-E_2(p)} = \gamma(p). \frac{\beta(p)}{1+\beta(p).1} = \frac{\gamma(p).\beta(p)}{1+\beta(p)}$$

d'ou
$$S(p) = S_1(p) + S_2(p) = \frac{\alpha(p).\beta(p)}{1 + \beta(p)}.E_1(p) - \frac{\gamma(p).\beta(p)}{1 + \beta(p)}.E_2(p)$$

Q - 2 : Donner la fonction de transfert du système représenté sur la figure suivante :



Q - 2 : Donner la fonction de transfert du système représenté sur la figure suivante :



$$S(p) = H_4(p).H_3(p). \left[-H_5(p).S(p) + H_2(p). \left(+H_1(p). \left[+E(p) - H_7(p).S(p) \right] - \frac{H_6(p)}{H_4(p)}.S(p) \right) \right]$$

$$S(p) = H_4(p).H_3(p).\left[-H_5(p).S(p) + H_2(p).\left(+H_1(p).\left[+E(p) - H_7(p).S(p)\right] - \frac{H_6(p)}{H_4(p)}.S(p)\right)\right]$$

$$S(p).\left(1 + H_4(p).H_3(p).\left[H_5(p) + H_2(p).\left(H_1(p).\left[H_7(p)\right] + \frac{H_6(p)}{H_4(p)}\right)\right]\right) = \dots \\ \dots H_4(p).H_3(p).H_2(p).H_1(p).E(p)$$

$$S(p) = H_4(p).H_3(p).\left[-H_5(p).S(p) + H_2(p).\left(+H_1(p).\left[+E(p) - H_7(p).S(p)\right] - \frac{H_6(p)}{H_4(p)}.S(p)\right)\right]$$

$$S(p).\left(1 + H_4(p).H_3(p).\left[H_5(p) + H_2(p).\left(H_1(p).\left[H_7(p)\right] + \frac{H_6(p)}{H_4(p)}\right)\right]\right) = \dots \\ \dots H_4(p).H_3(p).H_2(p).H_1(p).E(p)$$

$$\frac{S(p)}{E(p)} = \frac{H_4(p).H_3(p).H_2(p).H_1(p)}{1 + H_4(p).H_3(p).\left[H_5(p) + H_2(p).\left(H_1(p).[H_7(p)] + \frac{H_6(p)}{H_4(p)}\right)\right]}$$

$$S(p) = H_4(p).H_3(p).\left[-H_5(p).S(p) + H_2(p).\left(+H_1(p).\left[+E(p) - H_7(p).S(p)\right] - \frac{H_6(p)}{H_4(p)}.S(p)\right)\right]$$

$$S(p).\left(1 + H_4(p).H_3(p).\left[H_5(p) + H_2(p).\left(H_1(p).\left[H_7(p)\right] + \frac{H_6(p)}{H_4(p)}\right)\right]\right) = \dots \\ \dots H_4(p).H_3(p).H_2(p).H_1(p).E(p)$$

$$\frac{S(p)}{E(p)} = \frac{H_4(p).H_3(p).H_2(p).H_1(p)}{1 + H_4(p).H_3(p).\left[H_5(p) + H_2(p).\left(H_1(p).[H_7(p)] + \frac{H_6(p)}{H_4(p)}\right)\right]}$$

$$\frac{S(p)}{E(p)} = \frac{H_4(p).H_3(p).H_2(p).H_1(p)}{1 + H_4(p).H_3(p).H_5(p) + H_4(p).H_3(p).H_2(p).H_1(p).H_7(p) + H_4(p).H_3(p).H_2(p).H_1(p)}$$

(□▶◀∰▶◀늘▶◀불▶ 불 쒸९♡

$$S(p) = H_4(p).H_3(p).\left[-H_5(p).S(p) + H_2(p).\left(+H_1(p).\left[+E(p) - H_7(p).S(p)\right] - \frac{H_6(p)}{H_4(p)}.S(p)\right)\right]$$

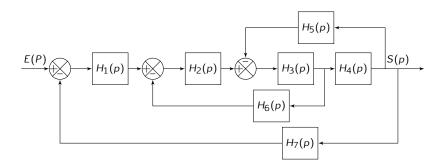
$$S(p).\left(1 + H_4(p).H_3(p).\left[H_5(p) + H_2(p).\left(H_1(p).\left[H_7(p)\right] + \frac{H_6(p)}{H_4(p)}\right)\right]\right) = \dots \\ \dots H_4(p).H_3(p).H_2(p).H_1(p).E(p)$$

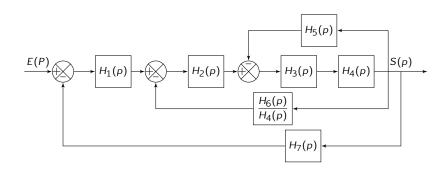
$$\frac{S(p)}{E(p)} = \frac{H_4(p).H_3(p).H_2(p).H_1(p)}{1 + H_4(p).H_3(p).\left[H_5(p) + H_2(p).\left(H_1(p).[H_7(p)] + \frac{H_6(p)}{H_4(p)}\right)\right]}$$

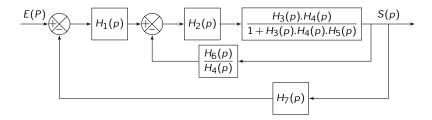
$$\frac{S(p)}{E(p)} = \frac{H_4(p).H_3(p).H_2(p).H_1(p)}{1 + H_4(p).H_3(p).H_5(p) + H_4(p).H_3(p).H_2(p).H_1(p).H_1(p).H_7(p) + \cancel{\text{Li}_4(p)}.H_3(p).H_2(p)} \frac{H_6(p)}{\cancel{\text{Li}_4(p)}}$$

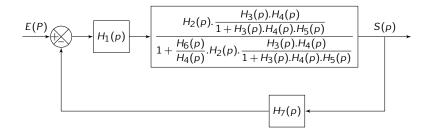
$$\frac{S(p)}{E(p)} \quad = \quad \frac{H_4(p).H_3(p).H_2(p).H_1(p)}{1+H_4(p).H_3(p).H_5(p)+H_4(p).H_3(p).H_2(p).H_1(p).H_7(p)+H_3(p).H_2(p).H_6(p)}$$

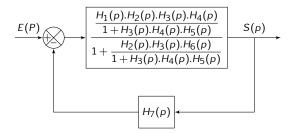
Q - 2 : Donner la fonction de transfert du système représenté sur la figure suivante :

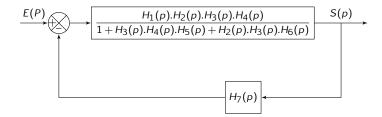












$$E(P) = \underbrace{\frac{H_1(p).H_2(p).H_3(p).H_4(p)}{1 + H_3(p).H_4(p).H_5(p) + H_2(p).H_3(p).H_6(p)}}_{1 + H_7(p).\frac{H_1(p).H_2(p).H_3(p).H_4(p)}{1 + H_3(p).H_4(p).H_5(p) + H_2(p).H_3(p).H_6(p)}} S(p)$$

$$E(P) \xrightarrow{H_1(p).H_2(p).H_3(p).H_4(p)} \frac{H_1(p).H_2(p).H_3(p).H_4(p)}{1 + H_3(p).H_4(p).H_5(p) + H_2(p).H_3(p).H_6(p)} \xrightarrow{S(p)} S(p)$$

$$1 + H_7(p).\frac{H_1(p).H_2(p).H_3(p).H_4(p)}{1 + H_3(p).H_4(p).H_5(p) + H_2(p).H_3(p).H_6(p)}$$

$$E(P) = H_1(p).H_2(p).H_3(p).H_4(p) 1 + H_3(p).H_4(p).H_5(p) + H_2(p).H_3(p).H_6(p) + H_1(p).H_2(p).H_3(p).H_4(p).H_7(p)$$

Sommaire

- Régulation d'eau
- 2 Servocommande
- 3 Opérations sur les schéma blocs et fonctions de transfert
- Positionnement d'une antenne satellite
 - Enoncé
 - Etude du système avec correcteur proportionnel

Positionnement d'une antenne satellite

Positionnement d'une antenne satellite

Une antenne parabolique permet sur un satellite l'échange d'informations avec la terre. Cette antenne doit être précisément orientée vers les antennes sur terre. A cette fin, deux moteurs asservis en position assurent l'orientation angulaire. On se propose d'étudier l'un des asservissements.

Positionnement d'une antenne satellite

Une antenne parabolique permet sur un satellite l'échange d'informations avec la terre. Cette antenne doit être précisément orientée vers les antennes sur terre. A cette fin, deux moteurs asservis en position assurent l'orientation angulaire. On se propose d'étudier l'un des asservissements.

Le système est piloté par une tension de consigne $u_c(t)$ et assure une position angulaire θ de l'antenne. Cette tension provient d'une interface Homme/machine permettant d'obtenir $u_c(t)$ de la consigne angulaire θ_c .

Positionnement d'une antenne satellite

Une antenne parabolique permet sur un satellite l'échange d'informations avec la terre. Cette antenne doit être précisément orientée vers les antennes sur terre. A cette fin, deux moteurs asservis en position assurent l'orientation angulaire. On se propose d'étudier l'un des asservissements.

Le système est piloté par une tension de consigne $u_c(t)$ et assure une position angulaire θ de l'antenne. Cette tension provient d'une interface Homme/machine permettant d'obtenir $u_c(t)$ de la consigne angulaire θ_c .

Le comportement du moteur est modélisé par une fonction de transfert du premier ordre de gain $K_m=11~\rm rad/s/V$ et de constante de temps $\tau_m=5~\rm ms$.

Il est commandé par une tension $u_m(t)$ fournie par un amplificateur et admet en sortie la vitesse de rotation $\dot{\theta}(t)$. L'amplificateur est modélisé par une fonction de transfert du premier ordre de gain $K_A=50$ et de constante de temps $\tau_A=0.5$ ms. Il est commandé par une tension v(t).

Il est commandé par une tension $u_m(t)$ fournie par un amplificateur et admet en sortie la vitesse de rotation $\dot{\theta}(t)$. L'amplificateur est modélisé par une fonction de transfert du premier ordre de gain $K_A=50$ et de constante de temps $\tau_A=0.5$ ms. Il est commandé par une tension v(t).

Un correcteur de fonction de transfert C(p) est placé en amont de l'amplificateur et adapte la tension ε en une tension v(t) pour commander l'amplificateur.

Il est commandé par une tension $u_m(t)$ fournie par un amplificateur et admet en sortie la vitesse de rotation $\dot{\theta}(t)$. L'amplificateur est modélisé par une fonction de transfert du premier ordre de gain $K_A=50$ et de constante de temps $\tau_A=0.5$ ms. Il est commandé par une tension v(t).

Un correcteur de fonction de transfert C(p) est placé en amont de l'amplificateur et adapte la tension ε en une tension v(t) pour commander l'amplificateur.

Un capteur de gain $K_c=2$ V/rad assure la chaîne de retour en mesurant θ et fournie une tension e. La mesure est comparée à la consigne $u_c(t)$ tel que $\varepsilon=u_c-e$.

Etude du système avec correcteur proportionnel

Q - 33 : Tracer le schéma bloc du système.

Traduction de l'énoncé

$$U_m(p) \downarrow K_m \downarrow p.\Theta(p)$$

Comportement du moteur

41 / 44

$$U_m(p) | K_m | p.\Theta(p)$$

$$1 + \tau_m.p$$

Comportement du moteur

$$\begin{array}{c|c}
V(p) & K_A \\
\hline
1 + \tau_A \cdot p & U_m(p)
\end{array}$$

Amplificateur

$$U_m(p) \downarrow K_m \downarrow p.\Theta(p)$$

Comportement du moteur

$$\xrightarrow{V(p)} \begin{array}{|c|c|} \hline K_A & U_m(p) \\ \hline 1 + \tau_A . p & \end{array}$$

Amplificateur

$$\xrightarrow{\varepsilon(p)} C(p) \xrightarrow{V(p)}$$

Correcteur

$$U_m(p) | K_m \over 1 + \tau_m p | p.\Theta(p)$$

• Comportement du moteur

$$\xrightarrow{V(p)} \begin{array}{|c|c|} \hline K_A & U_m(p) \\ \hline 1 + \tau_A . p & \end{array}$$

Amplificateur

$$\xrightarrow{\varepsilon(p)} C(p) \xrightarrow{V(p)}$$

Correcteur

$$\xrightarrow{\Theta(p)}$$
 K_c $E(p)$

Capteur de gain

$$U_m(p) | K_m | p.\Theta(p)$$

$$1 + \tau_m.p$$

Comportement du moteur

$$\xrightarrow{V(p)} \begin{array}{|c|c|} \hline K_A & U_m(p) \\ \hline 1 + \tau_A . p & \end{array}$$

Amplificateur

$$\xrightarrow{\varepsilon(p)} C(p) \xrightarrow{V(p)}$$

Correcteur

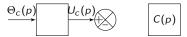
$$\xrightarrow{\Theta(p)}$$
 $K_c \xrightarrow{E(p)}$

Capteur de gain

$$U_c(p) \xrightarrow{\varepsilon(p)}$$

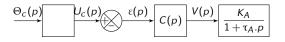
$$\uparrow E(p)$$

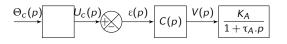
Comparateur



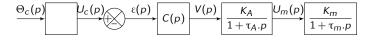


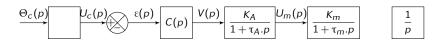
$$\frac{K_A}{1+\tau_A.p}$$

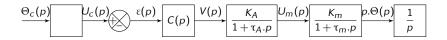


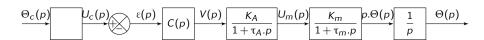


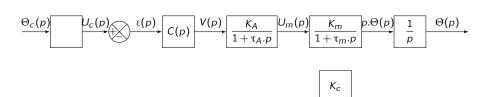
$$\frac{K_m}{1+\tau_m.p}$$

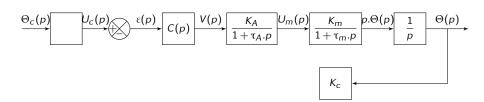


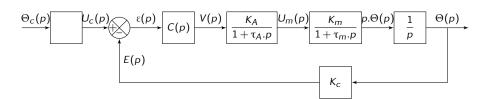


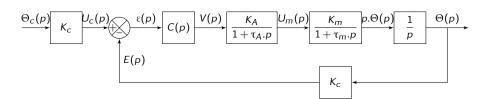












Fonction de transfert en boucle ouverte

Q - **34** : Calculer la fonction de transfert en boucle ouverte puis la fonction de transfert en boucle fermée pour un correcteur proportionnel : $C(p) = K_P$.

FTBO(p) =
$$D(p).R(p) = K_p.\frac{K_A}{1 + \tau_A.p}.\frac{K_m}{1 + \tau_m.p}.\frac{1}{p}.K_c$$

= $\frac{K_p.K_A.K_m.K_c}{p.(1 + \tau_A.p).(1 + \tau_m.p)}$

Fonction de transfert en boucle fermée

$$FTBF(p) = \frac{FTCD(p)}{1 + FTBO(p)} = \frac{D(p)}{1 + D(p).R(p)}$$

$$= \frac{\frac{K_p.K_A.K_m}{p.(1 + \tau_A.p)(1 + \tau_m.p)}}{1 + K_c.\frac{K_p.K_A.K_m}{p.(1 + \tau_A.p)(1 + \tau_m.p)}}$$

$$= \frac{K_p.K_A.K_m}{p.(1 + \tau_A.p)(1 + \tau_m.p) + K_c.K_p.K_A.K_m}$$